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Abstract

Philosophical reflection about the sciences has persistently given rise to worries

that mathematics, while true of its own special objects, is inapplicable to nature or

to the physical world. Focusing on the case of geometry, and drawing on the histories

of philosophy and science, I articulate a series of challenges to the applicability of

geometry based on the general idea that geometry fails to fit (or correspond to)

nature. This series of challenges then plays two major roles in the dissertation: it

clarifies the ways in which the applicability of geometry poses a problem for two major

17th century natural philosophers, viz., Galileo and Leibniz, and it allows for the

investigation of the relationship between geometric structures and nature by means

of an investigation of the applicability of geometry.

I begin with the challenge pressed by some thinkers in the Aristotelian tradition

that the results which geometry proves about its objects are false when interpreted

as assertions about objects in nature. Despite the durable influence of this challenge

and the Aristotelian theory of science which inspires it, I argue that Aristotle himself

did not oppose the use of geometry in empirical inquiry, but rather offered an account

of it. I then examine how Galileo takes on the objection that geometric results are

false if understood as claims about nature in his Dialogue Concerning the Two Chief
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World Systems. On my interpretation, Galileo argues the objection should be recast

as the claim that there are no geometric points, lines, or surfaces in nature. This is

an objection both Galileo and Leibniz take seriously in developing their new mathe-

matical physics, although I argue that Galileo and Leibniz react to the objection very

differently: Galileo rejects the objection as false and grounded on a misconception of

the relationship between geometry and nature, whereas Leibniz grants the truth of

the objection and tries to show that it is not damaging for the project of mathematical

physics.

In defending the applicability of geometry, both Galileo and Leibniz help to de-

velop and employ notions of approximation in the sciences. Their work highlights

an important presupposition of approximations: that there must be determinate dis-

crepancies between an object being approximated and its approximation. I conclude

the dissertation with an argument that actual applications of geometry in empirical

science require that there be determinate discrepancies between geometric structures

and nature.
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I have consulted with several scholars of the historical figures I discuss. Concerning

the material on Aristotle and later Aristotelians, I wish to thank Gisela Striker, John

Murdoch, and Mark Schiefsky. Concerning the material on Galileo and Galileo’s near

predecessors, I wish to thank George Smith and Paolo Palmieri. For comments on

drafts of the Galileo chapter I would like to thank Paolo Galluzzi, Peter Koellner,

Samuel Levey, Susanna Siegel, Arnon Levy, and Kritika Yegnashankaran. While at

Harvard I was able to attend three graduate seminars solely on Leibniz, the first by

Donald Rutherford, the second by Samuel Levey, the third by Jeffrey McDonough

and Alison Simmons. Each of the seminars contributed to my understanding of

Leibniz. For general guidance and feedback on the content of the Leibniz chapter, I

must especially thank Jeffrey McDonough, Samuel Levey, and Alison Simmons. For

exposing me to Leibniz’s correspondence with the Electress Sophie and for granting

vii



Acknowledgments viii

me permission to use his unpublished translation of that correspondence, I thank

Donald Rutherford.

Besides the guidance and feedback from my committee—these are always to be

assumed—I received valuable feedback on the first and last chapters from a number

of audiences who attended talks in which I combine some of the elements of both. I

am thankful to audiences at the Harvard Metaphysics and Epistemology Workshop,

the Minnesota Center for Philosophy of Science, and Williams College. I would

especially like to acknowledge feedback from Peter Godfrey-Smith, Bernhard Nickel,

Matt Boyle, and Tom Garrity.

With respect to the technical appendix to the Leibniz chapter, I wish to thank

and acknowledge the assistance of my good friend Chris Hillar. On the third grade

playground we were awed by how fast exponents could make numbers grow, and

some twenty odd years later we land up in discussions of how small the differences

are between the stages in the construction of the Koch curve. Chris’s mathematical

expertise was essential for me to be able to move from proof idea to proof.

From the point of view of my general education, I would like to thank the invest-

ment put into me by my teachers Olga McLaren, Fritz Brun, Tom Keelan, and Richard

Hislaire. For training in mathematics, I wish to thank Susan Loepp, Olga Beaver,

Victor Hill, and Kim Bruce (and the last two especially for independent tutorials in

logic that covered material otherwise untaught). For my entrance to philosophy and

roughly half of my college level training I thank Steve Gerrard.

Finally and on the more personal side of things, I would like to thank my wife

Amrita Ahuja for her sharp mind and loving support.



To my mother

And hers

And to the memories of my father

And his

ix



Chapter 1

Challenging the Applicability of

Geometry

In the history of philosophical reflection about the sciences there have been per-

sistent worries that mathematics, while perhaps both applicable and true when dis-

cussing its own special subject matter, is nonetheless inapplicable to the physical

world or when it comes to nature. These worries have been most severe in the case

of geometry, where the concern has been that although geometry furnishes us with a

collection of truths about its special objects—points, lines, curves, etc.—nonetheless

geometry is inapplicable when it comes to natural things such as bodies, trajectories,

and physical space.

These worries about the applicability of geometry have nearly always taken place

against a background in which, as a matter of scientific practice, geometry was being

applied routinely and (by the standards of the time) successfully in the study of

nature. In ancient science the application of geometry was especially evident in

1
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astronomy, optics, and mechanics.1 This remained the case into the 17th century,

during which the range of applications of geometry was expanded tremendously by

the many researchers who attempted to give natural scientific explanations exclusively

in terms of the size, shape, position, and motion of bodies; each of these fundamental

notions was to be understood geometrically.2 In the present day, we have inherited

various questions from the 17th century or earlier which have traditionally received

geometric answers and often still do: What is the figure (viz., shape) of the earth?

What trajectory does the moon trace out in its orbit? In more recent times we

have added further questions to these: What is the shape of DNA? And, perhaps

most importantly: What mathematical geometry accurately captures spatiotemporal

relations in the physical world?

In much of this work I will be concerned with questions of the applicability of

geometry which come down to us from ancient and 17th century science. This is espe-

cially the case in the following three chapters in which I discuss Aristotle, Galileo, and

Leibniz. Like other scientists of their respective periods, Aristotle, Galileo and Leib-

niz all applied geometry in their scientific work. They form part of the background

just mentioned in which geometry is routinely applied in the study of nature. On the

other hand, each one developed conceptual resources which help us to articulate and

deepen the inchoate worry that geometry might somehow be inapplicable with respect

1See especially Ptolemy’s Almagest and Euclid’s Optics (Ptolemy, 1998; Euclid, 1972).

2I am referring to the adherents of the mechanical philosophy, various versions of which were
defended by Galileo, Descartes, and other scientists. That Descartes understood the fundamental
notions of the mechanical philosophy geometrically is illustrated well to his response to Desargues’
concern that he had given up geometry in favor of other studies; Descartes replied in 1638 that “if
[Desargues] cares to think about what I wrote about salt, snow, rainbows, etc., he will see that my
entire physics is nothing but geometry” (Descartes, 1991, p. 119). For the original French text see
(Descartes, 1964-1976, Vol. II p. 268).
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to nature. We can therefore ask regarding each of these three thinkers: What chal-

lenges to the applicability of geometry in the study of nature arise within his thought

and work? Moreover, Aristotle, Galileo and Leibniz all developed philosophical views

according to which geometry plays various important roles in natural science. So we

may pose an additional question concerning each of them: What positive solution did

he (or could he) offer in order to meet the challenge to the applicability of geometry

which arises for him? In the following three chapters I will give answers to these

questions as they concern Aristotle, Galileo and Leibniz in turn.

In this first chapter I want to set aside consideration of any positive solutions to

worries about the applicability of geometry and focus directly on the worries. My

aim is to develop a series of challenges one might make to a natural scientific theory

which applies geometry, later members of which tend to be more articulate and better

developed than previous members. I do not claim that these challenges somehow all

represent the very same underlying worry, although they do have a strong family

resemblance. Thus it can sometimes be difficult to tell whether a given thinker is

raising one or the other of the challenges, or even more than one at the same time.

I will use the thought of Aristotle, Galileo, and Leibniz in posing these challenges,

but that does not make any one of the challenges particularly Aristotle’s or Galileo’s

or Leibniz’s. Rather, I hope that by grounding the discussion in these and other

historical figures I will be able to articulate challenges to geometry that are richer in

virtue of their sensitivity to the history of philosophy and scientific practice.

I wish to be clear right from the beginning that my ultimate goal is not to call

the applicability of geometry to the physical world into doubt. While I believe it is
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worthwhile for its own sake to elucidate the family of challenges I am about to dis-

cuss, I do not intend to use any one of them in an attack on geometry’s applications.

Rather, getting clear on these challenges to the applicability of geometry serves two

methodological purposes. Firstly, taken as objections to any particular application

of geometry, the challenges highlight certain theoretical and practical problems for

the working scientist. Especially when I am discussing historical figures, much of

my aim will be to see how those figures grapple with the problems and argue that

they can be overcome. I believe this illuminates the issue of how scientists over time

have become more able and sophisticated in their applications of geometry, and it

thereby illuminates what such ability and sophistication amounts to. Secondly, be-

cause the challenges to the applicability of geometry I investigate concern a failure

of correspondence between geometric objects and the physical world, they provide a

conceptual link between the question of the applicability of geometry and the related

but separate question of the relationship between geometric objects and physical real-

ity. In the final chapter of this work I will use that link to argue that the applicability

of geometry imposes a substantive constraint on the relationship between geometric

objects and the physical world.

1.1 Sphaera planum in puncto non tangit

I begin with an as yet inarticulate worry that geometry is somehow inapplicable

to the physical world. An early and highly influential source of this worry is to be

found in Aristotle’s Metaphysics B, where Aristotle writes:

. . . [A]stronomy. . . cannot be dealing with perceptible magnitudes nor with
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this heaven above us. For neither are perceptible lines such as the geome-
ter speaks of (for no perceptible thing is straight or curved in this way;
for a hoop touches a straight edge not at a point, but as Protagoras said
it did, in his refutation of the geometers), nor are the movements and
complex orbits in the heavens like those of which astronomy treats, nor
have geometric points the same nature as the actual stars.3

For the time being I would like to bracket the question of how to interpret the signif-

icance of this text for the understanding Aristotle’s own views and focus instead on

just what position is being attributed to Protagoras.4 Protagoras is supposed to have

said that a hoop does not touch a straightedge at a point, and the context suggests

that what is at issue are perceptible straight lines and curved lines. The claim seems

to imply that if we were to take a straight ruler and lay it against a circular sheet

of paper, we would see that the ruler and the paper do not contact each other at

just one point. This is deemed to be a refutation of geometry since the latter tells us

that a circle and a line tangent to it intersect at exactly one point. It is noteworthy

that no claim is made about what we would see if we were to put ruler and paper

together, although from personal experience I think the likely alternative is that we

see the ruler and paper touching each other along a very short line.5 Other salient

3All citations of Aristotle refer to (Aristotle, 1984a, 1984b). I will follow the practice of giving
the Bekker numbers in addition to the page numbers in the volumes just cited. The text just cited
appears in the Metaphysics at 997b30-998a10 (Aristotle, 1984b, p. 1576).

4I concur with Lear (1982) that this stretch of Metaphysics B is part of a discussion of the diffi-
culties facing Platonistic views and does not express Aristotle’s own position. For Lear’s treatment
of this issue, see especially §2 of (Lear, 1982). Nonetheless, later Aristotelians I will discuss presently
did use this passage from Metaphysics B as inspiration for their challenges to the applicability of
geometry.

5Some translators have thought it so obvious that this was Protagoras’s view that they put it in
the translation. Kathleen Freeman translates as follows: “Protagoras, arguing against the definition
of the mathematicians and appealing to perception, used to say that the tangent touched the circle
not at a point but along a line” (Freeman, 1957, p. 126). My colleagues who read Greek assure me
that there is no basis for adding the phrase “but along a line” to be found in Aristotle’s text. It
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possibilities would be that ruler and paper cannot be made to touch, or that ruler and

paper touch over a so-called indivisible line, viz., an extremely small line of non-zero

length which nonetheless cannot be divided into smaller lines. I do not believe we

have any textual evidence that will help us settle the question of which among these

possibilities conforms to Protagoras’s opinion.

Although I am inclined to think that Protagoras’s opinion about the true contact

of a hoop with the straightedge remains something of a mystery to us, Averroës shows

no hesitation in making the following statement in his commentary to Metaphysics B:

The geometer in fact demonstrates that the straight line touches a circle
in a point: but a sensible line does not touch a sensible circle in any
other way than in a line. And he similarly posits that a sphere touches a
surface at a point: but a sensible sphere does not touch a sensible surface
in any other way than in a surface. And therefore Protagoras refuted
the geometers in the sophistical manner and said that their science was
false. . . 6

It is clear from this passage that Averroës takes Protagoras’s opinion to be that the

hoop and the straightedge touch in a line, though of course that does not settle the

issue. Now, it is ultimately not so important for our purposes whether Protagoras

himself held that the hoop and straight edge touch in a line or in some other way

(just so long as their contact is not at a point). Much more important is what the

tradition of commentary on Aristotle and Aristotelian philosophy made of the view

is also clear from Averroës’ commentary on Metaphysics B that Averroës reads the objection to be
that a circle and a line do not touch at a point but rather in a line. Again, this does not strictly
follow from the text. We will turn to Averroës’ commentary presently.

6See comment 8 of Averroës’ commentary to Metaphysics B in (Aristotle, 1550 – 1552, Vol. 8 p. 22
et verso). The translation from the Latin is mine. Here is the original: “Geometer enim demonstrat
quod linea recta tangit circulum in puncto: sed linea sensibilis non tangit circulum sensibilem, nisi in
linea. Et similiter ponit quod sphaera tangit superficies in puncto: sed sphaera sensibilis non tangit
superficiem sensibilem, nisi in superficie. Et ideo Protagoras sophista redarguebat Geometras, et
dicebat quod scientia eorum est falsa. . . ”
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attributed to Protagoras. That a sensible circle touches a sensible line not at a point

but along a line—or even more so that sensible sphere touches a sensible plane not at

a point but over a surface—became stock examples trotted out in order to illustrate

how the natural or sensible world deviates from what geometry asserts. One can see

this already in the passage from Averroës just given, but one finds it also elsewhere

in Averroës,7 in Aquinas,8 and in the writings of other Aristotelians. Indeed, for

a number of later thinkers working within a broadly Aristotelian framework, the

Protagorean claim that a sensible sphere contacts a sensible plane not at a point but

in a surface approached the status of a commonplace.9

Just to deny that a sensible sphere touches a sensible plane at a point is not yet

to raise much of an objection to the use of geometry in the study of nature. Since

it is a theorem of (Euclidean) geometry that a plane tangent to a sphere intersects

the sphere in exactly one point, it does seem to follow that on the Protagorean view,

geometry misrepresents spheres and planes in nature in at least that one respect.

Moreover, if we were to infer from the geometric theorem about spheres and planes

that, for example, the contact of a plane with a spherical planet occurs at a point,

we would be making a bad inference. Nonetheless, we might hold out hope that the

apparent failure of geometry to capture the facts of nature might be isolated to a small

7Cf. for example Averroës’ commentary on De Caelo (Aristotle, 1550 – 1552, Vol 10, p. 11
verso).

8Cf. Aquinas’s Division and Methods of the Sciences, where Aquinas writes: “Thus, the judgment
about a mathematical line is not always the same as that about a sensible line. For example, that
a straight line touches a sphere at only one point is true of an abstract straight line but not of a
straight line in matter. . . ” (Aquinas, St. Thomas, 1986, p. 78).

9Two such thinkers I will discuss at greater length here are Alessandro Piccolomini and Benedict
Pereira.
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handful of propositions concerning circles, spheres, lines and planes. For safety’s sake,

these propositions could simply be avoided when reasoning about the natural world.

If it can be made to stick, the more forceful objection would be the one according

to which the theorems of geometry are generally false when they are understood as

claims about the natural world. That would be harder for the natural scientist merely

to work around. I suspect the more forceful objection is often implicit in the use of

the contact of the sphere and the plane as a stock example; to bring up the example

is already to suggest that many further propositions of geometry also deviate from

what happens in nature or in sense perception. But it takes some further work to

develop and articulate the more general, hence more forceful challenge we are aiming

at.

Two thinkers who help to develop the challenge are Benedict Pereira (1535 - 1610)

and, partly in response to Pereira, Galileo. Pereira was a Jesuit Aristotelian philoso-

pher one generation older than Galileo who occupied several chairs at the Collegio

Romano in Rome, including the chair in physics.10 In his major philosophical work

De Communibus Omnium Rerum Naturalium Principiis, Pereira attacks the applica-

bility of geometry along Protagorean lines, with the difference being that Pereira is

more general and more explicit in raising his objection:

. . . [T]he properties of quantity which are to be demonstrated by the math-
ematician do not match up with respect to substance, but per se, as being
divisible, commensurable, proportional, equal, or unequal: similarly a tri-
angle has three angles equal to two right angles, a sphere cannot touch a
plane except at a point, and other things of this kind which without any
substance considered per se are to be seen in quantity. . . [but in fact] no

10A.C. Crombie gives the official title of Pereira’s chair as being “Physica (seu Philosophia Natu-
ralis)”. For more on Pereira, Galileo, and the major universities of Italy in their time, see (Crombie,
1977, pp. 63-64 et passim).
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triangle has three angles equal to two right angles, and no straight line
touches a circle at a point, because they are in some substance. . . 11

Pereira grants that the mathematician’s theorems are correct in their way (namely,

per se), but he is willing to deny those theorems quite generally as soon as they are

understood to be claims about material bodies in nature.12 Galileo gives us a less

technical version of Pereira’s position in his Dialogue Concerning the Two Chief World

Systems by putting the following words into the mouth of Simplicio, the representative

of the Aristotelians in the dialogue:

. . . [T]hese mathematical subtleties. . . are true in the abstract, but applied
to sensible and physical matter they don’t answer up. Because mathemati-
cians may demonstrate well enough by their principles, for example, that
sphaera tangit planum in puncto, a proposition similar to the present one.
But when it comes to matter, things happen otherwise. What I mean
about these angles of contact and ratios is that they all go by the board
for material and sensible things.13

By now we have seen several informal or colloquial ways of saying what is wrong

with geometry as applied in the study of nature: the natural world doesn’t answer

11The translation is mine. Here is the original: “[A]ffectiones quae a Mathematico demonstran-
tur de quantitate, non ei conveniunt in ordine ad substantiam, sed per se, ut esse divisibilem,
commensurabilem, proportionabilem, aequalem, vel inaequalem: similiter triangulum habere tres
angulos aequales duobus rectis, sphaericum non posse tangere planum nisi in puncto, et alia eius-
dem generis, quae sine ullius substantiae respectu per se spectantur in quantitate. . . [enim] neque
triangulum habet tres angulos aequales duobus rectis, nec linea recta tangit circulum in puncto,
quia insint in aliqua substantia. . . (Pereira, 1586, pp. 375-376).

12The passage from Pereira is made more difficult by the technical vocabulary he uses; we will
consider the phrase “per se” at greater length in the discussion of Aristotle’s Posterior Analytics in
Chapter 2.

13See (Galileo, 1967, p. 203). I have deviated at various points from Drake’s translation. Here is
Galileo’s original text: “[P]erché finalmente queste sottigliezze mattematiche, Sig. Salviati, son vere
in astratto, ma applicate alla materia sensibile e fisica non rispondono: perché dimonsterranno ben
i mattematici con i lor principii, per esempio, che sphaera tangit planum in puncto, proposizione
simile alla presente; ma come si viene alla materia, le cose vanno per un altro verso: e cos̀ı voglio
dire di quest’angoli del contatto e di queste proporzioni, che tutte poi vanno a monte quando si viene
alla cose materiali e sensibili” (Galileo, 1998a, p. 220).
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up to or correspond to (risponde), or match up with or fit (convenit), the geometric

theorems. The more formal way of analyzing this failure of correspondence depends

on there being some way of interpreting geometric theorems as being about material

bodies in the natural world. Let us suppose we can force the desired interpretation

of a geometric theorem φ by writing “When it comes to physical and material things,

φ.” The failure of correspondence with respect to any given geometric proposition φ

is simply the fact that, whereas φ is a result of geometry, when it comes to physical

and material things, ¬φ.

The completely general version of this objection against geometry in the study of

nature would just be that for any theorem of geometry φ, when it comes to physical

and material things, ¬φ. The way in which Pereira and Galileo state the objection,

it is unclear whether the objection is meant to be completely general. It seems

likely that the objection supposes a failure of correspondence with respect to any

proposition stating a precise ratio, including equality, between quantities; since many

propositions of geometry do state precise ratios, that would already make the failure

of correspondence quite significant. On the other hand, it seems far too extreme

to suppose that all geometric theorems fail when interpreted as being about natural

objects; consider theorems stating inequalities or stating suitably robust facts about

incidence: e.g., in a triangle, the angle opposite the larger side is larger;14 if a line

intersects one side of a triangle but does not intersect any of the three vertices of the

triangle, then the line also intersects one of the other sides of the triangle.15 Though

14This is Euclid, I.18 (Euclid, 1956, p. 283).

15This is the axiom of geometry named for Moritz Pasch.
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it introduces an element of vagueness in the objection, let us use “Γ” for the set of

geometric theorems with respect to which nature fails to correspond. To be faithful to

the spirit of Pereira’s objection, we may suppose Γ includes the various Protagorean

propositions and propositions about precise ratios (including the claim that the angle-

sum of a triangle equals two right angles). Otherwise it is left unspecified just which

geometric theorems are in Γ. The challenge to geometry is then:

[Protagorean Challenge] For all φ ∈ Γ, φ is a theorem of geometry, and when it

comes to physical and material things, ¬φ.16

What one would most like to know of course is just which theorems of geometry

are in Γ, that is, informally, which ones “fail to correspond” in nature. In the next

section, we will consider weighty reasons for thinking that Γ must really be empty,

and that will lead us to our next challenge.

1.2 Geometric objects do not exist in nature

A typical feature of the thinkers who raise the Protagorean Challenge is that

they want to grant the truth of geometric theorems and the validity of geometric

demonstrations, at least as these are understood in geometry.17 This is, in a way, a

16Here is a rough translation of the Protagorean Challenge into English for those readers who
find the symbolism unhelpful: the challenge claims that each geometric theorem in a certain col-
lection of such theorems asserts a falsehood when it comes to physical and material things. The
advanced reader will see that the Protagorean Challenge was actually formulated without semantic
terminology, but in any case the advanced reader has no use for the rough translation just provided.

17A possible exception here is Protagoras himself. Protagoras may simply have been trying to
show how geometry can be reduced to contradictions. I call the challenge “Protagorean” rather than
“Protagoras’s” partly because Protagoras’s own view of these issues remains obscure. At any rate,
Protagoras’s own view is arguably less important than the use to which his remark was put by later
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virtue of the sort of position out of which the Protagorean Challenge is apt to be made:

without proposing the outright rejection of geometry as false, it still attempts to call

its applicability into question. However, one who raises the Protagorean Challenge

while granting the validity of geometric demonstrations runs a very serious risk of

contradicting himself. Part of Galileo’s contribution to this debate was to expose

that risk with great flair in the Dialogue.

Suppose someone claims that when it comes to natural and material things, it is

not the case that a sphere touches a plane at a point. It follows from this claim that

in nature there is a sphere and a plane which touch each other in some other way

than a point. We can obtain a (putative) concrete example of this by considering

the statement of another Aristotelian from renaissance Italy, Alessandro Piccolomini

(1508 - 1579), who writes: “Even if celestial bodies are free of every imperfection and

are perfectly round, nonetheless they cannot be touched in this way by a straight line

without the contact comprehending some interval.”18 This suggests that if we want a

concrete example, we may consider Mars: Aristotelians like Piccolomini should grant

that Mars is perfectly spherical, and yet they should also grant that any plane we

care to pick that is tangent to Mars shares not just a point with the surface of Mars

but rather a whole surface.

Now let S be Mars and let P be a plane tangent to it (see Figure 1.1). Let p and

p′ be points in the intersection between S and P , and let o be the center of S. By a

philosophers such as Averroës and Pereira.

18The original text: “Siquidem, quamvis corpora caelestia ab omni labe immunia, sint perfecte
rotunda ac tornata: non ob id tamen a recta linea, possent ita contingi, ut quadam intercapidine non
contingantur” (Piccolomini, 1547, p. 20). See also Biringucci’s translation at (Piccolomini, 1582, p.
38).
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prior lemma we have that the line op and the line op′ are orthogonal to P ; the lemma

is that a plane tangent to a sphere at a point is orthogonal to the line containing the

center of the sphere and the given point. However, there is exactly one line l that is

orthogonal to P and contains o. Therefore line op and line op′ are in fact the same

line l. Moreover, there can be at most one point in the intersection of line l and plane

P orthogonal to l. Therefore p = p′, i.e., S and P intersect at just one point. If we

continue to insist that p 6= p′, we are contradicting ourselves.

o

p
p’

P

S

o

p
p’

P

S

l

?

Figure 1.1: Cross Section of the Contact of Mars with a Plane

By now it should be evident that there is a significant problem with the Pro-

tagorean Challenge. Someone who raises the challenge grants that there are coun-

terexamples to geometry in nature, e.g., that material spheres such as planets contact

planes at more than a point in nature. If the person raising the challenge also grants

the validity of geometric demonstrations, we can use the demonstration on the pu-

tative counterexample, the material sphere, to show that the material sphere does
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not contact a plane at more than one point. But one cannot maintain that the ma-

terial sphere both does and does not share exactly one point with a plane tangent

to it. Similar reasoning should show that any sentence with respect to which nature

putatively fails to correspond to geometry—any putative member of Γ above—is the

source of a contradiction for anyone raising the Protagorean Challenge who does not

wish to quarrel with the validity of geometric demonstrations.

How might someone who is inclined to press the Protagorean Challenge avoid

being reduced to a contradiction in this way? One salient strategy would be to deny

that the conditions for geometric demonstration are ever really met in nature, or, in

other words, to deny that geometric objects exist in nature. That way an opponent

can’t produce a geometric demonstration and thereby obtain a reductio ad absurdum.

Having argued against a fictionalized Aristotelian pressing the Protagorean Challenge

in much the same manner we have just rehearsed, Galileo offers the exit strategy we

are now considering:

[W]hen you want to show me that a material sphere does not touch a
material plane in one point, you make use of a sphere that is not a sphere
and of a plane that is no plane. By your own statement, spheres and planes
are either not to be found in this world, or if found they are spoiled upon
being used for this effect. It would therefore have been less bad . . . for you
to have said that if there were given a material sphere and a plane which
were perfect and remained so, they would touch one another in a single
point, but then to have denied that such were to be had (Galileo, 1967,
pp. 206-207).

In the example we had been considering a couple of paragraphs ago, Galileo’s advice

to someone pressing the Protagorean Challenge would be to give up the claim that

Mars is really a perfect sphere. To our sensibilities, this seems like a very reasonable

thing to do, though a committed Aristotelian might find that concession somewhat
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harder to swallow.19

On my reading of Galileo’s text, someone who takes Galileo’s advice would give

up pressing the Protagorean Challenge and instead move to a different challenge to

geometry, namely:

[No-Shapes Challenge] There are no geometric objects in nature. That is, there

are in nature no points, lines, or surfaces which satisfy the axioms of geometry.

Although Galileo is willing to entertain and respond to the No-Shapes Challenge, he

ultimately does not regard the No-Shapes Challenge as a warranted assertion. We

will consider Galileo’s response in Chapter 3. Leibniz, on the other hand, does take

the claim of the No-Shapes Challenge to be warranted. Here is a pair of characteristic

statements:

There is no determinate shape in actual things, for none can be appropri-
ate for an infinite number of impressions. And so neither a circle, nor an
ellipse, nor any other line we can define exists except in the intellect. . . 20

It is true that perfectly uniform change, such as is required by the idea
of movement which mathematics gives us, is never found in nature any
more than are actual figures which possess in full rigor the nature which
geometry teaches us. . . 21

19Aristotle had argued in De Caelo that the celestial bodies are spherical. Cf. De Caelo, p. 290a30
- 290b11 (Aristotle, 1984a, pp. 478-479).

20Cf. Leibniz’s “Primary Truths” (Leibniz, 1989, p. 34). For the Latin original, see (Leibniz,
1923ff, VI.4, p. 1648).

21See (Leibniz, 1969, p. 583). The text is entitled “Reply to the Thoughts on the System of
Preestablished Harmony Contained in the Second Edition of Mr. Bayle’s Critical Dictionary, Article
Rorarius”. I have deviated from Loemker’s translation. Here is the original: “Et quoyque dans la
nature il ne se trouve jamais des changement parfaitement uniformes, tels que demande l’idée [sic]
que les Mathematiques nous donnent du mouvement, non plus que des figures actuelles à la rigueur
de la nature de celles que la Geometrie nous enseigne. . . ” (Leibniz, 1875-1890, Vol. 4, p. 568).
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Leibniz pushes the No-Shapes Challenge to geometry further than Galileo by devel-

oping evidence that the fundamental physics of our universe is incompatible with the

existence in nature of geometric shapes or other precise geometric objects. However,

like Galileo, part of Leibniz’s contribution to science consists in the identification of

the shapes that various natural objects and processes have; notably, Leibniz argues

in “An Essay on the Causes of Celestial Motions” that the orbit of Mars is an ellipse

(Leibniz, 1993). This forces Leibniz to attempt to overcome the No-Shapes Challenge,

and he does so in a way that is importantly different from Galileo. It is the fact that

both Galileo and Leibniz recognize and make an attempt to overcome the No-Shapes

Challenge that makes it natural to discuss them both in the present work despite

the fact that on the topic of the applicability of geometry, Leibniz does not engage

directly with Galileo’s views. We will return to Leibniz both in the next section of

this chapter and at length in Chapter 4. For the remainder of this section we will

attempt to gain a finer understanding of the Protagorean and No-Shapes Challenges.

The No-Shapes Challenge to geometry in the study of nature is a close cousin to

the Protagorean Challenge. Perhaps both challenges can lay equal claim to being an

analysis of what it could mean for nature to fail to correspond to (or fail to agree

with, etc.) geometry. The Protagorean Challenge focuses on the putative failure of

the truth values of sentences of geometry to match the truth values of those same

sentences interpreted so as to be about nature: “A plane tangent to a sphere intersects

the sphere at a point” is claimed to be true as interpreted in geometry, but false as

interpreted to be about natural, material objects. The No-Shapes Challenge focuses

on a putative nonexistence in nature of the geometer’s objects, so that if we grant
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that geometry does give an account of some realm of objects, then this realm is not

the natural realm, nor is it a part of the natural realm. The prima facie threat to the

applicability of geometry raised by the two challenges is somewhat different, however.

As we saw, the Protagorean Challenge threatens to unmask geometry as a source

of error in reasoning about nature. The No-Shapes Challenge, on the other hand,

threatens to reveal geometry’s gross irrelevance in any reasoning about nature. The

worry raised by the No-Shapes Challenge is that geometry would be like any other

account of a kind of object which turns out not to exist—say, phlogiston—which

is rendered useless in the study of nature because one never finds any such thing.

Moreover, the non-existence of geometric objects in nature looks to have very wide

significance for the proponents of the mechanical philosophy, since they aim to give

explanations in terms of the size, shape, position, and motion of bodies. Geometry

was to provide the means for saying what the sizes, shapes, positions, and motions

of bodies are. The No-Shapes Challenge appears to undermine the suitability of

geometry to serve that purpose.

It illuminates both the Protagorean Challenge and the No-Shapes Challenge to

ask the question whether it is possible to raise both challenges at the same time.

At first blush it would seem that it is not possible, since it appears that in denying

various theorems of geometry as interpreted to be about physical, material things,

one has at least to grant that there are geometric objects in nature—they just happen

to be such as to violate the laws of geometry. In our chief example, in order to deny

that in nature all planes touch spheres tangent to them at a point, we had to grant

that in nature there are spheres which violate the geometric theorem, and this is
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incompatible with the No-Shapes Challenge. However, it is possible to take the view

that “when it comes to physical and material things, ¬φ” means something rather

different from the simple denial of “φ”, at least when φ is a claim of geometry. In

other words, one who wanted to raise the Protagorean and No-Shapes Challenges

simultaneously might stave off a contradiction by claiming that there is some kind of

equivocation happening with the sentences we are substituting for “φ”.

For example, one might claim that in geometry “sphere” picks out objects, points

on the surface of which are all equidistant from some given point; whereas interpreted

so as to be about physical, material things, “sphere” picks out objects whose surfaces

are more or less equidistant from a given location.22 Call such objects “material

spheres”, and suppose that there are similar physical definitions for “point”, “plane”,

etc. A proponent of the No-Shapes Challenge might further believe that as a matter

of physical fact, material spheres are never actually spheres in the geometric sense.

“When it comes to physical and material things, it’s not the case that a plane touches

a sphere tangent to it at a point” is reckoned to be true because some material spheres

have small flat regions which touch material planes over a surface. On the other hand,

the geometric theorem also comes out true, since it does assert a truth about spheres

in the geometric sense. On this proposal, the phrase “when it comes to physical and

material things” both restricts the interpretation to the physical world and changes

the standards for what is to count as a sphere.

I suspect that when some philosophers have prefaced sentences of geometry with

22I am intentionally leaving it a vague question, just how much difference in the radii of the body
is compatible with its being a material sphere. Nothing hinges on this; we could stipulate that a
given body is to count as a material sphere if none of its radii is more than 2% greater than any
other radius. I am also using “location” to pick out some suitable physical analogue of a point.
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such phrases as “when it comes to physical and material things” or “in nature”,

they have in fact meant to change the standards for what is to count as the type of

object described in the sentence.23 In such circumstances, the meaning of geometric

sentence has been altered; “material sphere” as just defined does not mean the same

as “sphere”. What looks like the denial of a geometric claim—some spheres touch

planes tangent to them over a surface—really isn’t. Recognition of this fact gives a

proponent of the Protagorean Challenge a reason to drop it in favor of the No-Shapes

Challenge.

There is another historically important understanding of what phrases such as

“when it comes to physical and material things” or “in nature” accomplish when

used as a preface to a geometric sentence. It derives from Aristotle and comes into

play in discussions of geometry in the Aristotelian tradition.24 To my own ear, this

understanding allows us to come as close as possible to maintaining the Protagorean

and No-Shapes Challenges simultaneously without contradiction. By way of expla-

nation I will introduce a fictional example:25

Suppose there were discovered a species of pearl-bearing oyster which, unlike the

species of pearl-bearing oyster we know, almost always produce nearly perfect spheri-

cal pearls. The reason for this is that these oysters only allow nearly spherical irritants

to form the “seeds” of their pearls, and whenever the pearl deviates from being per-

23For example, I think Galileo uses the phrase with this meaning in some contexts. See Chapter 3.

24For Aristotle, see the discussion of the shape of the Earth in De Caelo, pp. 297a8-298a22
(Aristotle, 1984a, pp. 488-489). For an example from the Aristotelian tradition, see (Biancani,
1996, pp. 179-184).

25This example is meant to illustrate a way of having a shape that parallels, but is somewhat
simpler than, Aristotle’s understanding of what it is for the Earth to have the shape that it has.



Chapter 1: Challenging the Applicability of Geometry 20

fectly spherical at some stage in its development, there is a natural mechanism in the

oyster which corrects the deviation. It is possible to disturb the pearl forming mech-

anism artificially, perhaps by depriving the oyster of calcium at certain times. But

as long as the mechanism is functioning normally and without external constraints,

the pearls produced look perfectly spherical to the naked eye.

Someone with Aristotelian inclinations might insist that these oysters’ pearls are

spheres, where by “sphere” she means exactly what is meant in geometry. However,

she may well go on to say that for a physical body to be a sphere is for it to be

the product of a natural mechanism which, when operating free from all confounding

factors, produces spheres. Because there always are some small confounding factors

or perturbations which affect the production of the pearls, there might never be any

instant at which all the points on the surface of any given pearl are equidistant from

some center. But at every stage of its development, any given pearl tends towards

having a surface with that character. Attributing to the pearl a spherical shape

registers this fact and helps to explain how the pearl develops over time.

On the suggestion we are now considering, prefixing a geometric sentence with the

phrase “when it comes to physical and material things” still changes the meaning of

the geometric sentence. However, the claim is that it does not change the meanings

of the geometric vocabulary (such as “point”, “sphere”, etc.). Rather, the use of

that phrase fixes on a certain non-geometric understanding of what it is for a body

to have a given shape: for a body b to have a shape s in nature is for b to be the

product of a process which in certain idealized circumstances would produce bodies
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with shape s.26 This stands in contrast with the geometric understanding of what it

is for something to have a shape; to have a shape in geometry requires the surface of

that object to have a certain precise character either at a given time or, in the case

of abstract objects, timelessly.

For someone who accepts both the natural and the geometric sense of what it

is to have a shape, the challenges to geometry tend to arise from conflicts between

these two senses. According to what it is to have a shape in nature, a given pearl

from our special oysters is a sphere; whereas according to what it is to have a shape

in geometry, that same pearl may not have a shape such as to intersect a plane at a

point. This forms the grounds for saying that in nature, some spheres touch planes

tangent to them in a surface (and not a point). Similarly, if one restricts attention

to shape possession in the natural sense, it will follow that the geometer’s shapes do

exist in nature, since many processes are such as to produce objects with geometric

shapes. At the same time, it may hold that in the geometric sense no physical or

material object has any of the shapes studied in geometry.

Views of the sort we have just considered which distinguish what it is to have a

shape in geometry from what it is to have a shape in nature do have their virtues.

In particular, the notion of having a shape in nature seems well adapted for the

explanation of the development of various natural processes and objects. On the

other hand, the two notions induce two different sets of criteria for the attribution

26There is an appearance of circularity here, since the explanation of what it is to have a shape in
nature invokes some prior understanding of what it is to have a shape tout court. I suspect that the
notion of having a shape in nature is in fact derivative from a more basic understanding of what it
is to have a shape. That more basic understanding could just be the geometric one, in which case
the notion of having a shape in nature requires the geometric notion. But what it is to have a shape
tout court could also be taken as primitive.
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of shapes which are not in harmony with each other in that they assign different

shapes to the same object. As we have just seen, this can lead to paradoxes and

errors in reasoning, as when one attributes a shape to a body in the natural sense

and then proceeds to reason about it as if it had that shape in the geometric sense.

Though historically important, I do not believe that such views present us with the

most effective framework for challenging the application of geometry in the study of

nature.

1.3 Nature lacks geometric structure

In the last section we considered several reasons to give up the Protagorean Chal-

lenge to geometry in favor of the No-Shapes Challenge. While the No-Shapes Chal-

lenge posed a historically important objection to the applications of geometry in the

context of 17th century science, by the end of that period and in fact already in Leib-

niz one can see that the No-Shapes Challenge is in certain respects too narrow. In

the present section I will consider how the No-Shapes Challenge may be generalized.

This will lead to a further challenge which, in addition to being more general, is the

sort of challenge even a 21st century critic of the applicability of geometry might raise.

Recall that someone pressing the No-Shapes Challenge insists that there are in

nature no geometric objects: no geometric points, lines, or surfaces. For someone

who holds this view while also holding that geometry does describe some subject

matter, it is natural to conceive of geometric objects as abstract in a contemporary

sense, viz., as not being located in spacetime or standing in causal relations with

anything in spacetime. But if geometric objects are understood from the beginning
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to be abstract, it conveys no information about the natural world whatsoever to say

that there are no geometric points, lines, or surfaces in nature. It does not tell us

about what the surfaces of bodies are like, how they move, etc., and so it is compatible

with the trajectories of cannon balls being perfectly parabolic or Mars being perfectly

spherical. On this conception of geometric objects as abstract, to deny that geometric

objects are in nature is just to make a conceptual remark about the kind of objects

geometry describes.

The upshot of the last paragraph is that the No-Shapes Challenge to geometry

loses its force if one has a conception of geometric objects as abstract, and it would

be better to formulate a challenge which holds its force independently of this aspect

of one’s conception of geometric objects. One can make some progress on this front

by thinking about how someone with a conception of geometric objects as abstract

would reformulate the No-Shapes Challenge. The guiding thought would not be that

nothing in nature is a geometric object, but rather that nothing in nature precisely re-

sembles geometric objects in the relevant respects. For example, suppose one wanted

to claim that no body in nature precisely resembles a sphere. If one conceives of

spheres as abstract, say, as collections of ordered triples of real numbers satisfying

x2 + y2 + z2 = r2 for some radius r, then one might formulate the claim as follows:

there is no natural coördinatization of physical space such that the set of coördinates

corresponding to locations on the surface of any body is a sphere.27 This example

suggests that the resemblance to geometric objects may be made sense of in terms

27For this formulation to work there must be some constraints on how one can assign coördinates,
and that is the point of the word “natural” in the sentence. Not every assignment of triples of real
numbers to locations in space counts as a natural coördinatization.
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of mappings (in this case coördinatization) between items in nature and geometric

objects. I will pursue this suggestion in a moment.

There is another way in which the No-Shapes Challenge is not as general or explicit

as one might hope. The proponent of the No-Shapes Challenge assumes some tacit

understanding of what it would be for there to be geometric objects in nature. But

the existence of geometric objects in nature might be realized in a number of different

ways—or, thinking along the lines of the last paragraph, there might be a number of

different respects in which some items in nature precisely resemble geometric objects.

Historical proponents of the No-Shapes Challenge would at the very least intend to

deny that the surfaces of any bodies precisely resemble any geometric object in respect

of shape. They would probably also deny that the motion of any body in nature

precisely resembles any geometric curve in respect of shape. But there are other

salient ways in which items in nature might precisely resemble geometric objects:

the totality of locations in physical space itself could have the same structure as

(Euclidean) space; or all the moments of time could have the same structure as the

points on a line. The more general challenge to the applicability of geometry would

be one which rules out such resemblances.

Leibniz is a good example of a thinker who wants to rule out all of the possible re-

semblances between geometric objects and natural objects we have lately considered.

In a letter to the Electress Sophie, Leibniz writes:

The fact is that matter, the evolution of things, and finally every genuine
composite, is a discrete quantity, but that space, time, mathematical mo-
tion, intension or the continual increase that is conceived in speed or other
qualities. . . is a continuous and undetermined quantity in itself, or one in-
different to the parts that can be taken from it and which are actually
taken in nature. The mass of bodies is actually divided in a determi-
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nate manner and there is nothing exactly continuous in it; but space or
the perfect continuity which is in the idea marks only an undetermined
possibility of dividing it as one will.28

In this passage, Leibniz is contrasting space with matter (or the mass of bodies), time

with the evolution of things, and mathematical motion with the motion of bodies. All

of the former items in these pairs are to be construed as mathematical entities, and all

of the latter items as physical ones. On Leibniz’s view, these mathematical entities all

possess a characteristic kind of continuity which the physical entities lack. This means

that the mathematical entities are dissimilar to the physical ones at a fundamental

level of structure. For instance, if we pick two points in mathematical space, there

is always a point halfway between them. On the other hand, if we pick two physical

points in matter, on Leibniz’s view there may or may not be any physical point which

is halfway between them. If there is a body, the border of which is exactly halfway

between the physical points, then the physical point exists. Otherwise the physical

point does not exist. This implies that the structure of the mathematical points is

different from that of the physical ones. More generally, the assertion that physical

entities fail to be continuous in the way that geometric entities are continuous implies

that a geometric line, surface, or space is structurally dissimilar to any physical entity

or collection of physical entities.29

To sum up this section so far, there are two significant shortcomings of the No-

Shapes Challenge to geometry: a. it loses its intended force when joined with a

28I am using an unpublished translation of the October 31, 1705 letter to the Electress Sophie
prepared by Donald Rutherford. I wish to thank Rutherford for permission to use his translation in
this work. For the original text see (Leibniz, 1875-1890, Vol. 7 p. 562).

29For a much more detailed discussion of this issue, see §4.2.
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conception of geometric objects as abstract in a contemporary sense; b. it does not

appear to recognize that there are different ways in which objects in nature might

precisely resemble geometric objects in certain respects. It would seem that of the

two shortcomings, (b.) is the fundamental problem. For if we had a flexible enough

notion of resemblance, we could reformulate the challenge to geometry as there not

being anything in nature which resembles geometric objects in the relevant respects.

Then, even if geometric objects are thought to be abstract, the denial that anything

in nature appropriately resembles geometric objects will have the force which the

No-Shapes Challenge intends.

One such flexible notion of precise-resemblance-in-a-respect is the contemporary

notion of sameness of structure, where sameness of structure is witnessed by isomor-

phic mappings. Recall that S1 and S2 are isomorphic just in case there is a one-to-one

mapping f : S1 7→ S2 which preserves some privileged collection of operations and re-

lations defined on the elements of S1 and S2. These operations and relations give the

respects in which S1 and S2 have the same structure, and the one-to-one mapping en-

sures sameness with respect to cardinality. Because there are several different formal

ways of characterizing Euclidean space, there are different relations we might demand

to be preserved by an isomorphism. For concreteness, we will follow Tarski’s method

of describing Euclidean space, so that the relations to be preserved are: (1.) point b

is between points a and c; (2.) points a and b are exactly as far apart from each

other as points c and d. The fact that these geometric relations can be systematically

correlated with some other relations makes it possible for the structure of Euclidean

space or a Euclidean curve to be realized in multiple ways. For example, if we say that
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time has the structure of a Euclidean line, then the correlate of spatial betweenness

is temporal betweenness, one moment in time occurring after a second moment but

before a third. If f is to be an isomorphism between the line and time, we must have

that whenever a point b is between a and c on a line, f(b), a moment of time, comes

temporally between f(a) and f(c).

I therefore formulate an additional challenge to the applicability of geometry as

follows:

[No-Structure Challenge] Nothing in nature is isomorphic either to Euclidean

space, or to any Euclidean curve, or to any Euclidean surface.

A natural motto for the No-Structure Challenge would be “Nature lacks (Euclidean)

geometric structure.”

If the No-Structure Challenge can be sustained, it calls into question the use of

Euclidean geometry to describe and reason about natural objects and processes. If

nothing in nature is isomorphic to Euclidean space, then there are no natural objects

and relations which the Euclidean axioms can be interpreted as describing truthfully.

At least prima facie, we have a problem similar to the one presented by the No-Shapes

Challenge: geometry is telling us about a kind of object, the structure of which is

absent in nature. So the theory of that structure, Euclidean geometry, looks as if it

will turn out to be empty in the context of the natural world. Similarly, we might

have held out hope that even if there is nothing isomorphic to Euclidean space in

nature, at least at a local level there may be something isomorphic to a Euclidean

curve or surface. That would underwrite the use of the Euclidean theory of that curve

to describe and reason about that natural object (or those natural objects). But the
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No-Structure Challenge denies this as well.

Beyond isomorphism, there are other mappings such as homomorphisms which

preserve structure though to a lesser extent. Homomorphisms differ from isomor-

phisms in that they may fail to be one-to-one correspondences, so that the sets be-

tween which there is a homomorphism may differ with respect to cardinality. We

could also continue to speak about geometric isomorphisms or homomorphisms but

only require that some of the geometric relations be preserved by the mapping, e.g.,

the relation of one point being between two other points. A mapping between some

collection of physical entities and Euclidean space which preserved only the between-

ness relation of the latter would preserve the affine structure of the space but not the

metric structure. These other mappings could form the basis for other variants of the

No-Structure Challenge, such as that nothing in nature is homomorphic to Euclidean

space or to a Euclidean curve. If these variants could be sustained, they would show

a greater and greater structural discrepancy between nature and Euclidean space.

Similarly, it would be easy to formulate variants of the No-Structure Challenge

aimed at other geometric theories. If one wanted to call into question the applicability

of the theory of 4-dimensional Minkowski space to spacetime physics, at least prima

facie one way to do so would be to say that nothing in physical spacetime is isomorphic

to 4-dimensional Minkowski space.

1.4 A Final Challenge

To overcome the challenges to the applicability of geometry which they recognize,

both Galileo and Leibniz advocate some important role for approximations. We
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will consider in what way Galileo and Leibniz advocate approximations in Chapters

3 and 4. For Leibniz, whenever we attribute a geometric shape to a body or a

geometric curve to the motion of a body, we must be engaging in some kind of

approximation, since as we have seen Leibniz does not think the geometric shape or

curve could correspond exactly to the body or its motion. Galileo, on the other hand,

is unwilling to assert that there is never a body which corresponds exactly in shape

to any geometric surface. But he is willing to grant that for scientific purposes, we

may well need to treat a body as though its shape corresponds perfectly to a given

geometric shape even when we know it does not. The difficult task is to sort out just

when one is justified in making such an idealizing assumption. The fact that both

Galileo and Leibniz advocate some use of approximations in order to apply geometry

suggests a final strategy for challenging the use of geometry in the study of nature.

The guiding thought behind the strategy is to consider what the prerequisites are for

the legitimacy of approximating some aspect of nature by a geometric object, and

then to deny that the prerequisites are met.

Let us begin with the easier case of approximation of one geometric curve by

another and then turn to the thornier issue of a geometric curve approximating some

aspect of nature. In geometry, we routinely use one curve as an approximation to

another, as for instance when we use the tangent to a curve or an osculating circle as

an approximation of the curve itself. Sometimes two curves of independent interest

agree to high approximation over some interval where they are defined, as is the case

with sin x and tan x for small values of x (see Figure 1.2). Slide rule makers generally

take advantage of this fact and put only a single scale giving values for both sin x and
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Figure 1.2: Graph of sinx vs. tanx for small x

tanx for small x. In effect, this allows one to calculate the value for just one of the

two trigonometric functions and then, if x is small enough, use the same value for the

other.

A key feature of these ordinary cases of mathematical approximation is that there

is some fixed or determinate discrepancy between the two curves. If the discrepancy

is small enough for certain purposes, we can use the one curve as an approximation

to the other. On the other hand, if there is no determinate discrepancy, or if for

some reason we are not in a position to assess the discrepancy, we are not ordinarily

justified in making the approximation.

Now consider a case in which we want to approximate the shape of a body with a

geometric object. For the sake of concreteness, let us suppose we want to approximate

the shape of the Earth by a sphere, knowing full well that the shape of the Earth

does not correspond exactly to a sphere. This at least appears to presuppose two

things: first, that the Earth does possess some shape or other; second, that (as in
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the mathematical cases above) there is some fact of the matter as to the quantity or

kind of discrepancy between the Earth’s shape and the sphere. One might also add

a third prerequisite: that one must be able to assess, viz., estimate or calculate, the

quantity or kind of the discrepancy in order to determine whether the existence of

such a discrepancy is compatible with the original scientific purpose. In what follows

I will tend to assume that if the first two prerequisites can be met, then the third can

as well.30 The guiding thought in formulating the last challenge will be that these first

two prerequisites cannot be met, or rather that generalized versions of them cannot.

With the preceding as background I am in a position to state the last challenge

to the applicability of geometry I will discuss in this thesis, namely:

[No-Discrepancies Challenge] Given any natural item N and any geometric item

G, there is no determinate or well-defined discrepancy between N and G.

An intended consequence of the No-Discrepancies Challenge is that geometric

objects do not even approximate things in nature. This already implies the truth of

the No-Structure Challenge, but it implies a good deal more. An apt motto for the

No-Discrepancies Challenge would be: “Nature is blurry.”31

We can think about the possible discrepancies between the natural items and the

geometric objects in several different ways, partly depending on what we take nature

30My main reason for ignoring the third prerequisite is that it involves the way in which the
geometric and natural objects are given to us, as well as our powers of reasoning with respect to
them. It is therefore subjective in a way that the three prior challenges to geometry were not.
Those challenges concern the putative failure of nature to match up with or correspond to geometry
independently of our capacities to assess such correspondences. However, there is no reason one
couldn’t press the issue and argue that the third prerequisite can’t be met even if the first two can.
To the best of my awareness neither Aristotle, nor Galileo, nor Leibniz presses this issue.

31This motto is inspired by William Tait’s recent discussions of geometry. See especially §5.1.
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to be like. In Leibniz’s case, the aim of an approximation appears to consist in forc-

ing the quantitative difference between the aspect of nature and the approximating

geometric object to be so small as to be entirely negligible. Here we can take “dis-

crepancy” in a quantitative sense similar to that of “distance”. On the other hand,

Galileo’s concern in approximating the shape of the Earth with a sphere is whether

the shape of the Earth differs from the sphere in terms of tangency properties. Galileo

takes himself to be justified in approximating the shape of the Earth by a sphere if

and only the shape of the Earth shares the property with the sphere of touching a

plane tangent to it at exactly one point. The shape of the Earth might in fact differ

by a very large amount in the sense of “distance” while resembling the sphere in kind

as far as the tangency facts go. Therefore one must keep in mind that “discrepancy”

might mean different things in different contexts.

One important notion of discrepancy makes use of the idea of structure preserving

mappings from the last section. For one might hold that there are facts of the matter

concerning the question, “By how much does the structure of nature differ from the

structure of some given geometric objects?” For instance, even if there is not an

isomorphism between some locations or other point-like elements on the surface of a

body and a given Euclidean curve, one might still think there is a fact of the matter

as to how far away the shape of the body is from being isomorphically mappable into

the given curve. One could also think there is some fact of the matter as to how far

away the representation of physical space is from being isomorphically mappable into

Euclidean space or some other geometric space.

I will return to the No-Discrepancies Challenge in Chapter 5, where I will examine
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William Tait’s recent attempt to account for the applicability of geometry even while

granting the challenge. I will argue contra Tait that the No-Discrepancies Challenge

is incompatible with the deductive applicability of geometry. Therefore the fact of

the applicability of a given geometric theory imposes a substantial constraint on

nature: there must be determinate discrepancies between the geometric structures

characterized by the theory and the aspect of nature to which the theory is applied.

1.5 Outlook

Looking forward to the historical content of the next three chapters, a common

theme will be the extent to which Aristotle, Galileo and Leibniz are realists about

geometry in the sense that they believe nature either to have significant geometric

structure or to be approximated by geometric structures. Having formulated the No-

Discrepancies Challenge, I can now state one sense in which I will argue all are realists

about geometry: Aristotle, Galileo and Leibniz are all committed to the denial of the

No-Discrepancies Challenge. In particular, all three believe that there are entities,

taken in a broad sense of the term, corresponding to the shapes of bodies such that

there are facts of the matter about the quality or kind of discrepancy between these

entities and given geometric curves.

For Aristotle, the natural world is replete with geometric structure: the universe

itself is a sphere, as are all the planets; the planets move in circular orbits; a stone

dropped above the surface of the Earth falls in a straight line connecting its position

with the Earth’s center.32 Galileo, too, is willing to countenance geometric structure

32For Aristotle’s arguments for these claims, see De Caelo, passim (Aristotle, 1984a, pp. 447-512).
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in nature, as when he endeavors to show that accelerations are continuous in the way

the line is continuous;33 or as when he suggests in a general way that if we think there

are no geometrical objects in nature we should broaden our notion of what counts as

a geometric object.

Of the three main historical figures I will discuss, Leibniz is the least realist about

geometric structure in nature. Nonetheless, Leibniz is willing to countenance that

there are items in nature, the structure of which imitates geometric structure to

arbitrarily small margins of error. Leibniz’s intent seems to be to come as close as

one can to conceding that nature has geometric structure while still in the end denying

it.

33For evidence of this claim, see §2 of (Palmerino, 2001, pp. 385-405).
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Aristotle

Natural philosophers in the 17th century commonly criticized Aristotle and his

followers for shunning mathematical methods in their scientific research. One of

the most vocal critics in this regard was Galileo; Galileo took every opportunity

to emphasize the importance of mathematics in science and to deride Aristotelians

whose work was not properly informed by mathematics. In a famous passage from The

Assayer, Galileo makes a direct attack on an Aristotelian—the Jesuit Father Horatio

Grassi—whose work Galileo did not find properly mathematical. This becomes clear

when one cites the passage at slightly fuller length than is often done:

In [Grassi] I seem to discern the firm belief that in philosophizing one
must support oneself upon the opinion of some celebrated author. . . Possibly
he thinks that philosophy is a book of fiction. . . Well, [Grassi], this is not
how matters stand. Philosophy is written in this grand book, the uni-
verse, which stands continually open to our gaze. But the book cannot
be understood unless one first learns to comprehend the language and
read the letters in which it is composed. It is written in the language of
mathematics, and its characters are triangles, circles, and other geometri-
cal figures without which it is humanly impossible to understand a single

35
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word of it. . . 1

One can imagine how these words must have insulted Father Grassi when he read

them. Galileo strongly suggests that Grassi does not know mathematics and that

consequently he is unfit to do natural philosophy.2

At times Galileo makes a deeper criticism of the Aristotelians than that they pur-

sue natural philosophy badly in virtue of their ignorance of mathematics: he suggests

that they deliberately (and stupidly) ignore mathematics because they believe there

to be severe difficulties in principle involved in the application of mathematics to any-

thing of a sensible, material nature. In Galileo’s Dialogue Concerning the Two Chief

World Systems, Galileo has Simplicio, the interlocutor representing the Aristotelian

school of natural philosophy, argue that the theorems of geometry simply fail to hold

when we consider things that have a material nature.3 Specifically, Simplicio main-

tains that when we consider material bodies in space, it is false that spheres meet

planes tangent to them in a single point.4 By putting such statements in Simplicio’s

mouth, Galileo ties a certain skepticism towards the applicability of mathematics to a

long tradition of Aristotelian thought. As we saw in Chapter 1, this tradition extends

1See (Galileo, 1957, pp. 237-238). Galileo is using the word “philosophy” here in the sense of
“natural philosophy”.

2As I mentioned, Galileo was not the only natural philosopher who objected to the Aristotelians’
eschewal of mathematics. Descartes, for example, agreed with Galileo on this point. In a letter
to Mersenne about Galileo’s work, Descartes writes that “I find [Galileo] philosophizes much more
ably than is usual, in that, so far as he can, he abandons the errors of the Schools and tries to use
mathematical methods in the investigation of physical questions”. Cf. (Descartes, 1991, p. 124).

3I discuss Simplicio’s statement of this challenge to the applicability of geometry in §1.1; it is one
of the clearer statements of what I there call the “Protagorean Challenge”. I will discuss Galileo’s
reaction to the challenge at length in Chapter 3.

4See (Galileo, 1967, p. 203). The discussion between Simplicio and Salviati on this matter
continues until page 210.
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back through Benedict Pereira and Alessandro Piccolomini to Averroës and (in a

way) all the way back to Aristotle.5 Galileo’s text thereby raises a difficult historical

question which I hope to address in this chapter: Did Aristotle himself hold there to

be severe difficulties in principle standing in the way of applying mathematics either

to physics or to empirical inquiries generally?

The question I have just posed must be carefully distinguished from another

historical question which will not be my concern in this chapter: Did Aristotelian

philosophers (other than Aristotle) use Aristotle’s doctrines in order to raise severe

difficulties in principle standing in the way of applying mathematics to physics or

to empirical inquiries? I believe the answer to this latter questions is unequivocally

“yes”.6 Moreover, it is a worthwhile historical project for scholars of the 16th and

17th centuries to investigate the ways Aristotle’s thought was sometimes—though not

always—used to oppose mathematics during the period.7 This historical project re-

mains valuable in virtue of the light it sheds on the development of early modern

science, whatever Aristotle’s views may have been.

Turning now to Aristotle’s own views of the applicability of mathematics, one finds

recent interpreters divided on the issue. Some recent authors, especially those whose

work centers on 17th century developments in science, interpret Aristotle to have held

5See especially §§1.1–1.2. Even though Aristotle is a textual source of the worry that a hoop does
not touch a straight edge at a point, that does not mean Aristotle himself endorsed the worry. The
arguments in this chapter support the view that in fact he did not.

6The discussion of Pereira and Piccolomini in Chapter 3 provides an example.

7A considerable amount of work has been done on figures such as Piccolomini and their involve-
ment in the so-called debate “de certitudine mathematicarum”. See Chapter 3 for some discussion
and for pointers to the historical literature. Further work will surely be required in order to illumi-
nate the relationship between mathematics and the many Aristotelianisms of the Renaissance and
the early modern period.
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that mathematics is indeed inapplicable either to physics or to empirical inquiries

quite generally. To cite just one example, Stephen Gaukroger gives an extended treat-

ment of Aristotle’s philosophy of science in his book Explanatory Structures, and one

of the main conclusions of his discussion is that for Aristotle, “mathematical proofs

are simply inappropriate in physics” (Gaukroger, 1978, p. 202). Similar statements

about Aristotle are scattered throughout the literature on the 17th century.8

Partly in response to the authors just mentioned, other recent interpreters of

Aristotle have argued that, far from rejecting the use of mathematics in physics or

in other empirical inquiries, Aristotle offers a general theoretical account of how a

branch of mathematics is properly related to an empirical inquiry when the former is

applied in the latter. Two particularly helpful papers offering arguments in support of

this interpretation are James Lennox’s “Aristotle, Galileo, and the ‘Mixed Sciences’ ”

and Jonathan Lear’s “Aristotle’s Philosophy of Mathematics” (Lennox, 1986; Lear,

1982). In this chapter I will be developing an interpretation of Aristotle that is closely

aligned with Lennox’s and Lear’s. In particular, I will argue that Aristotle is more

concerned to describe how mathematics is applied in empirical contexts than to argue

that it cannot be done.

The first group of interpreters just described most commonly cite Aristotle’s Pos-

terior Analytics in support of the view that Aristotle rejected mathematics either

in physics or in empirical inquiries generally. The key argument is held to come in

Chapter 7 of Book Alpha, the chapter in which Aristotle lays down his infamous

8For two further examples, see (Dutton, 1999, p. 51n) and (Maull, 1980, p. 25).
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prohibition of “kind crossing”.9 In this chapter, I will to go back to the Posterior

Analytics to see whether the latter work supports the claim that Aristotle took there

to be some difficulty in principle involved in applying mathematics to empirical in-

quiries. While I acknowledge that Aristotle’s arguments raise a difficult puzzle about

how any one science can be applied to any distinct science—namely, the kind crossing

puzzle—I will argue that this puzzle should not lead us to saddle Aristotle with the

unsavory view that mathematics is inappropriate in empirical inquiry or in the study

of nature. On the contrary, Aristotle counts on there being ways of resolving the

puzzle which allow for branches of mathematics to apply to natural domains, and he

gives indications in the Posterior Analytics of how he thinks the puzzle is properly

resolved. The main contribution of this chapter over and above the excellent work of

Lennox and Lear is to offer a precise account of what a solution to the kind crossing

puzzle should look like.

2.1 Mathematical and Empirical Science in the Pos-

terior Analytics

The main subject of the Posterior Analytics is episteme; the word “episteme” has

been variously translated as “science”, “knowledge”, “scientific knowledge” and “un-

9Along with Lear, I do not read Aristotle as himself pressing the Protagorean worry that the
theorems of geometry should somehow turn out false when taken as claims about material objects.
In the part of Metaphysics B in which Aristotle discusses the issue, Aristotle is not presenting his
own view but rather presenting difficulties for the views of his opponents. See (Lear, 1982, §2).
Nonetheless, the prohibition on kind crossing does seem to raise a real difficulty for the applicability
of mathematics in empirical inquiry, and this prohibition is evidently in Aristotle’s own voice.
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derstanding”.10 The breadth of meaning in the translations of “episteme” testifies to

the fact that translators have misgivings about the straightforward identification of

the meaning of “episteme” with that of any English term. It is clear, however, that

Aristotle considers such disciplines as geometry, arithmetic, harmonics, and astron-

omy to fall under the concept episteme; for this reason it seems natural to translate

episteme as “science” or “scientific knowledge”, even if to do so involves us in anachro-

nism.11

Aristotle’s analysis of science employs the theory of syllogistic developed in the

Prior Analytics. A scientific argument (or demonstration) must be a valid deduc-

tion in the sense of the Prior Analytics, but it must also meet a number of further

conditions which Aristotle lays down in the Posterior Analytics (henceforth AnPst).

As Aristotle says in A 2 of AnPst, the premises of a scientific demonstration must

be “true and primitive and immediate and more familiar than and prior to and ex-

planatory of the conclusions” (71b23).12 Aristotle later proves that they must also be

necessary (74b28). The aim of these conditions is to ensure that when we possess a

scientific demonstration, we will thereby possess knowledge of its conclusion in a very

strict sense—that is, in the sense of “episteme”. A slightly modernized version of the

10For translations of episteme as “science” and “scientific knowledge”, see (McKirahan, 1992,
p. 3). Barnes opts to translate episteme as “understanding” in his translation of the Posterior
Analytics; see (Aristotle, 1993, p. 2). Unless I indicate otherwise, in the remainder of this chapter I
will use Barnes’s translation of the Posterior Analytics and give citations using the familiar Bekker
numbers. I will also sometimes refer to Chapters and Books of the Posterior Analytics in the
following way: “X y” refers to Chapter y in Book X. For example, “A 7” refers to Book Alpha,
Chapter 7. For other works by Aristotle I will use the translations found in (Aristotle, 1984a).

11For a couple of instances of Aristotle’s use of the word “episteme” in the Posterior Analytics,
see 71a3 and 75b12. The Greeks had no concept which corresponds closely to our modern concept of
science, and for this reason some commentators object to “science” as the translation of “episteme”.

12For an explanation of what Aristotle means by “primitive”, “immediate”, etc., see Barnes’s
commentary in his translation of the Posterior Analytics at (Aristotle, 1993, p. 94).
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definition of “episteme” Aristotle offers at A 2 might run as follows: an agent S has

episteme of a proposition p if and only if (i) S knows that p cannot be otherwise,

i.e., that p is necessary, and (ii) S knows of some explanation E that it is the correct

explanation of the fact that p (71b10).13 Because a deductively valid syllogism from

necessary premises yields a necessary conclusion, it is clear that when we possess a

scientific demonstration of a proposition p we will meet condition (i) with respect to

p; because a scientific demonstration must be explanatory of its conclusion, we will

also meet condition (ii).

The very high standards Aristotle places on episteme give rise to the suspicion that

episteme is extremely difficult to obtain. A contemporary reader might conclude from

Aristotle’s definition that we can only have episteme of those truths we nowadays take

to be necessary. This ordinarily encompasses the truths of logic and mathematics but

excludes almost everything else, and in particular it excludes many empirical truths

we would expect to form a part of scientific knowledge. Aristotle’s view on the scope

of necessary truth is quite different from ours, however; Aristotle takes more truths to

be necessary than we do, so that we may have episteme of many propositions which

to our eyes appear contingent. For example, Aristotle writes in the Movement of

Animals :

[W]hen we say it is impossible to see a sound, and when we say it is
impossible to see the men in the moon, we use the word in different ways:
the former is of necessity, the latter, though their nature is to be seen,
will not actually be seen by us. Now we suppose that the heavens are of

13Here are Aristotle’s own words: “We think we understand (epistasthai) something sim-
pliciter. . . when we think we know of the explanation because of which the object holds that it
is its explanation, and also that it is not possible for it to be otherwise” (71b10). For more discus-
sion of Aristotle’s definition, see ibid., p. 89. My modernized formulation of Aristotle’s definition
follows Barnes’s at loc. cit.
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necessity impossible to destroy and to dissolve, whereas the result of the
present argument would be to do away with this necessity.14

In the passage just cited, Aristotle emphasizes the strict necessity which accom-

panies the astronomical proposition that the heavens are indestructible. Elsewhere

Aristotle argues that “[t]he shape of the heaven is of necessity spherical.”15 Hence

on Aristotle’s conception of necessity, the definition of “episteme” given above does

not imply that such propositions from astronomy cannot be known in the strict sense

carved out by the definition. What we would call “scientific knowledge” and what

Aristotle would call “episteme” coincides more than may at first appear.

It is not my aim here to give a general overview of AnPst ; rather, I want to

focus on what Aristotle says in AnPst about the relationship between mathematical

and empirical sciences. I claim that there is ample textual evidence to show that

a primary goal of AnPst is to give an account of the relationship between branches

of pure mathematics and the natural sciences which apply them. Consequently, I

regard it as misguided to cite AnPst as evidence for the view that Aristotle rejected

the application of mathematics to natural science. In the remainder of this section, I

will consider particular stretches of AnPst which take up the question of how branches

of mathematics—in particular, geometry and arithmetic—are applied.

Aristotle first takes up the question of the application of mathematics in A 7,

where he claims that geometry and arithmetic prove results in optics and harmonics,

respectively (75b14).16 As we will see, Aristotle does not think it is ordinarily the

14See 699b18-699b23; I am using the translation which appears in (Aristotle, 1984a, p. 1089).

15See De Caelo 286b10 at (Aristotle, 1984a, p. 473).

16As Barnes points out, Aristotle is committed to optics and harmonics having their own
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case that one science can yield results in any distinct science, yet he explicitly makes

an exception for such pairs as geometry/optics because—as he says at 75b16—optics

“falls under” geometry (thateron hypo thateron). Aristotle also explicitly allows that

geometry be applied in mechanics; mechanics is another example of a natural science

“falling under” a mathematical one (76a23).17 Since some translators of AnPst have

preferred the rendering “one science is subordinated to another” to “one science falls

under another”, natural sciences which apply branches of mathematics have come

to be called “subordinate sciences” in scholarly literature on Aristotle. On either

rendering, “subordination” or “falling under” designates the relationship which holds

between a mathematical theory and a natural science when the natural science applies

the mathematical theory.18

At various points in AnPst—but especially in the stretch from A 7 to A 13—

Aristotle discusses the “falling under” relation and thereby the question of how math-

ematics is applied. One recurring theme in these discussions is that demonstrations in

a subordinate science make use of the theorems of the corresponding “superordinate”

science. Aristotle puts this point in different ways at different times: for example,

at 76a23 Aristotle says that “geometrical demonstrations attach to mechanical or

optical demonstrations”; he also says that optics is “proved from the same items as

principles—i.e., principles distinct from those of mathematics—so what Aristotle presumably means
here is that (for example) geometry helps us to prove results in optics, not that optical results are
literally results of pure geometry. See p. 160 of Barnes’s commentary following his translation of
AnPst.

17For a complete listing of all such pairs mentioned in AnPst, see ibid. pp. 158-159.

18Aristotle also indicates that whenever one science falls under another, the former science is
the domain of the more empirical scientist, whereas the latter science is the domain of the more
mathematical scientist (79a3). This provides evidence for the stronger claim that whenever science
x is subordinated to science y, x is more empirical and y more mathematical.
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geometry” and that the student of optics “should indeed supply arguments from the

principles and conclusions of geometry” (77b2). Although Aristotle’s statements on

this matter are somewhat vague, commentators seem to agree that what Aristotle

intends can be clarified by considering those subordinate sciences in Aristotle’s ken.19

Euclid’s Optics is particularly helpful in that regard, since it is very likely that the

latter work gives a representative sample of the optical demonstrations with which

Aristotle would have been familiar.20 To fix our ideas about how optics made use of

geometry in Aristotle’s time, let us give some brief consideration to the kind of proof

which appears in the Optics.

The subject matter of the Optics is visual perception, and it is largely exhausted

by the theory of perspective. The characteristic situation treated by the Optics is

one in which a viewer is taking in some scene; to make this situation amenable to

geometrical investigation, the viewer’s eye is assumed to occupy a single point, and

“visual rays” are assumed to emanate from the eye outward toward objects in the

viewer’s visual field. For purposes of giving proofs, visual rays are just geometrical

lines containing the eye at one point and some distinct point in the eye’s visual field.

Optical arguments prove such conclusions as that certain objects in the visual field

of the eye appear larger than others, that they appear to the left or to the right of

others, and so on. Richard McKirahan gives a detailed discussion of a proof from the

Optics in his article “Aristotle’s Subordinate Sciences”; McKirahan chooses the proof

of the theorem that “[o]f equal segments on the same straight line, those seen from

19See ibid., p. 159. See also (McKirahan, 1978, pp. 197-220). McKirahan gives a detailed
treatment of an argument from Euclid’s Optics in section III. I will be making use of McKirahan’s
treatment of the Optics in what follows.

20See ibid., p. 199.
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a greater distance appear smaller.”21 In this case we assume that the “object” seen

by the eye is a line with several line segments of equal length marked off on it; we

connect the eye up with the ends of the line segments by means of visual rays. We

now have a planar figure which is open to geometrical argument. Most of the optical

proof is pure geometry, with many of the propositions cited as theorems of Euclid’s

Elements. The geometrical part of the argument concludes with the statement that

the angle formed by the visual rays connecting the eye to the closest line segment is

larger than the angle formed by the visual rays connecting the eye to line segments

farther away. According to the fourth principle of the Optics, “things seen under

greater angles appear greater.”22 Hence we get the conclusion that the closest line

segment appears larger.

The kind of argument just described fits closely with Aristotle’s comments about

the role of mathematics in the proof structure of subordinate sciences. Geometrical

demonstrations attach to optical demonstrations in the quite literal sense that much

of an optical demonstration consists of a geometrical subproof. The Optics interprets

the geometrical subproof as having implications for visual perception by means of the

first principles of optics. However, the first principles of optics often play a relatively

minor role in the course of the main proof, and this perhaps accounts for Aristotle’s

21Ibid., p. 200.

22Cf. ibid., p. 207. The word I have translated as principle (“horos”) is most commonly translated
as “definition”, as this is how Euclid uses the word (loc. cit.). However, not all of the horoi of the
Optics can be plausibly called “definitions”, and consequently some translators have preferred to
render “horos” as “determination”. I have used “principle” because it is a familiar term not far in
meaning from “primitive sentence”, i.e., something which one can appeal to in a proof and which
one does not prove. Other horoi of the Optics include that “those things are seen on which the
visual rays fall, and those things on which they do not fall are not seen” and that “things seen under
more angles are seen more precisely”. For a full list of the horoi, see loc. cit.
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tendency to ignore them in such statements as that optics is “proved from the same

items as geometry” (77b2). This is not strictly correct even on Aristotle’s view, since

as Barnes points out Aristotle is committed to optics having principles of its own,

distinct from those of geometry.23 Nonetheless one can see that the geometry is, so

to speak, the driving force of many of the proofs, so that Aristotle’s statements may

not be overly misleading about the character of optics in his time.

Aristotle emphasizes another characteristic feature of the relationship between

subordinate and superordinate sciences at several points in AnPst : whereas practi-

tioners of a subordinate science such as optics know the facts of their discipline, the

practitioners of the superordinate science possess the explanations of those facts.24

In the example just considered, Aristotle would presumably argue that it is because

line segments closer to the eye subtend a larger angle at the eye that they also appear

larger. Aristotle does not explicitly say so, but his statements suggest that since a

subordinate science is more empirical than a corresponding superordinate science,

practitioners of the subordinate science might come to know of the facts through ob-

servation (79a3, 79a15). We might know from quite ordinary experiences that when

we mark off equal segments along the edge of a box in front of us, we see those seg-

ments which are closer to our eyes as longer than the others. However, it is plausible

to suppose that when we first acquire this knowledge, we do not as yet have an ex-

planation of that fact—our position is like that of a practitioner of a very empirical

23Again, see Barnes’s commentary at (Aristotle, 1993, p. 160).

24Cf. 76a11, 78b34, 79a2, and 79a15. Aristotle presumably means the word “know” here in a
weaker sense than that picked out by “episteme”, since the practitioner of optics would have to
know the explanation of the fact that p in order to have episteme of p. At 79a2 and 79a15, the word
translated as “know” is “eidenai”.
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optics. We only possess a proper explanation when we go through a (largely geomet-

rical) proof like the one described two paragraphs ago. Hence it is only insofar as we

are geometers in addition to students of optics that we possess proper explanations

for the optical facts.

Although we can provide some plausible cases in which a superordinate science

contains the explanations for facts known to practitioners of a corresponding sub-

ordinate science, there are also some cases where this view of the matter is quite

implausible. Aristotle infamously provides the following example: “it is for doctors

to know the fact that curved wounds heal more slowly, and for geometers to know the

reason why” (79a15). Aristotle presumably has in mind the geometrical fact that the

more a closed planar figure resembles a circle (the more “curved” it is), the higher

the ratio of its area to its perimeter will be.25 Here Aristotle overlooks the fact that

the explanation for curved wounds healing more slowly—supposing that they do heal

more slowly—ought also to make mention of the way the human body produces skin.

Aristotle seems to be imagining that the skin grows from the edges of the wound

towards the center, and everywhere with equal speed. Without any account of how

skin grows, the bare geometrical explanation is incomplete: we can imagine contra

Aristotle that skin is produced at an equal rate at all areas inside wounds, so that

wounds heal at the same speed regardless of size or shape. If Aristotle is right about

curved wounds healing more slowly, he must give some explanation of skin growth

that rules out the contrary possibility just considered. But in that case the explana-

tion for curved wounds healing more slowly is not contained within geometry—it also

25Cf. (Aristotle, 1993, p. 160).
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essentially involves some facts of medicine.26

Let us turn away from the difficulties just rehearsed and consider one final aspect of

the relationship between subordinate and superordinate sciences. At A 13, Aristotle

make the following somewhat puzzling statement:

The items in question [viz., the subordinate sciences] are things that, being
something different in their essence, make use of forms. For mathematics is
concerned with forms: its objects are not said of any underlying subject—
for even if geometrical objects are said of some underlying subject, it is
still not as being said of an underlying subject that they are studied (79a8-
79a13).27

We get a better idea of what Aristotle has in mind here by considering Book II of

the Physics, where Aristotle writes:

Now the mathematician, though he too treats of these things [i.e. shapes],
nevertheless does not treat of them as the limits of a natural body; nor
does he consider the attributes indicated as the attributes of such bodies.
That is why he separates them; for in thought they are separable from
motion, and it makes no difference, nor does any falsity result, if they
are separated. . . [Optics, harmonics and astronomy] are in a way the con-
verse of geometry. While geometry investigates natural lines but not qua
natural, optics investigates mathematical lines, but qua natural, not qua
mathematical.28

26The wound case makes clear that Aristotle must in some way qualify his general view that
superordinate sciences contain the explanation of facts belonging to subordinate sciences. Here is
one suggestion (couched in vocabulary which will be explained in the next section): a superordinate
branch of mathematics explains a conclusion belonging to a subordinate science just in case (i) the
predicate term of the conclusion belongs to the mathematical theory, (ii) the subject term picks out
an instance of a species dealt with by the mathematical theory, and (iii) the predicate holds per se
of all instances of the species. Consider the demonstration: “all stars are spherical; spheres have
volume equal to πr3, where r is the radius of the star; hence stars have volume equal to πr3.” The
reason why stars have volume equal to πr3 is because stars are instances of the species sphere and
spheres per se have volume equal to πr3.

27It is not obvious what “the items in question” refers to here; with Barnes, I am reading the
scope of that phrase to indicate subordinate sciences. See ibid., p. 159.

28See 193b32-194a11 in the Physics at (Aristotle, 1984a, p. 331). The italics here are Aristotle’s.
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In the two paragraphs just cited, Aristotle gives the following sort of picture of

the relationship between a mathematical science like geometry and the subordinate

sciences which apply it. In doing geometry, we study the shapes which material

bodies can instantiate without considering the material bodies which actually do

instantiate those shapes. In fact, for the purposes of a geometrical investigation

we do not even consider whether there are any material bodies which instantiate

precisely the shapes we are studying. As Aristotle says in the Physics, we accomplish

this by separating out in thought the shapes of material objects from their material

instantiations and ignoring their other attributes, e.g., the materials out of which

they are made.29 Or, as Aristotle puts it in AnPst, we study shapes not as predicated

of some underlying material object, even if in fact material objects constitute all

the instantiations of shapes there really are.30 Students of astronomy, in contrast,

study geometrical objects or attributes only insofar as these items are instantiated in

physical space and are relevant to their science. Spherical celestial bodies are instances

of the universal studied by geometry—we might call this universal “spherehood”—and

that is how theorems of geometry can apply also to the objects in the subject matter

of astronomy. Unlike the geometer, however, the astronomer may well investigate the

material nature of the spheres she studies. The material nature of stars is relevant to

astronomers, since among other things the material nature of the stars may explain

29Lear makes a detailed proposal about what this kind of separation amounts to in (Lear, 1982,
§1).

30Aristotle rejects the view that the shapes studied by mathematicians exist independently from
their material instantiations. This surfaces somewhat at A 11, where Aristotle writes that “[t]here
need not be any forms, or some one item apart from the many, in order for there to be demonstrations.
It must, however, be true to say that one thing holds of many” (77a5). Thus it is true to say of many
things that they are spheres, though there need not be some form of spherehood existing apart from
those many spheres in order for there to be geometrical demonstrations.
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the way they move, the changes to which they are susceptible, or even the shape they

possess.31

So far we have seen in broad outline how Aristotle conceives of the way natural

sciences apply branches of mathematics. On pages 158–162 of his commentary on

AnPst, Barnes provides a detailed list and discussion of every place Aristotle men-

tions the topic of subordination. By Barnes’s count, Aristotle describes fully ten

different aspects of the relationship between subordinate and superordinate sciences

in AnPst.32 By contrast, I am not aware of a single place in AnPst where Aristotle ex-

plicitly states that branches of mathematics are inapplicable in the setting of natural

or empirical science. As we will consider in some detail in the next section, Aristotle

does argue that distinct sciences are generally inapplicable to one another; in light of

the textual evidence we reviewed in this section, however, it would be out of place to

conclude from these arguments that Aristotle took mathematics to be inapplicable in

natural science. Rather, the only judicious reading of Aristotle must interpret him

as allowing for exceptions in the case of the subordinate sciences. In fact, Aristotle

himself explicitly marks out the subordinate sciences as exceptions to the general rule

(75b15).

31In Book II of De Caelo, Aristotle writes that “[i]t would be most reasonable and consequent
upon what has been said that each of the stars should be composed of that substance in which their
path lies, since, as we said, there is an element whose natural movement is circular”. Cf. De Caelo,
289a14 at (Aristotle, 1984a, pp.476-477).

32Cf. Barnes’s commentary at (Aristotle, 1993, pp. 158-159). If we consolidate items on the list
so closely related to one another as to virtually identical, we are plausibly left with eight items; three
of the items amount to Aristotle’s recognition that demonstrations in subordinate sciences make use
of theorems of the corresponding superordinate science.
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2.2 The Kind Crossing Puzzle

The conclusion of Aristotle’s argument that distinct sciences are inapplicable to

one another has come to be known as the prohibition on “kind crossing” or metabasis

(cf. 75b10). The heart of the argument appears in A 7 of AnPst, although there

Aristotle draws upon results from earlier chapters, especially A 6. Aristotle’s argu-

ment involves several technical notions which we have not yet discussed; I will first

introduce those notions and then turn to A 7.

To appreciate the kind crossing argument, we must first observe that in addition

to the requirements on the premises of demonstrative syllogisms listed above in the

introduction, Aristotle requires that the subject and predicate of each premise hold

of each other per se (kath’ hauto).33 “Per se” is a bit of Aristotelian jargon defined

in A 4 as follows: “Something holds of an item per se both if it holds of it in what

it is. . . and also if what it holds of itself inheres in the account that shows what it

is.”34 Barnes offers a clearer, more modern formulation of what this amounts to in

his commentary on AnPst :

(1) A holds of B per se =df A holds of B and A inheres in the definition of B.

(2) A holds of B per se =df A holds of B and B inheres in the definition of A.35

It is relatively easy to give examples of the use of “per se” indicated in (1): three

33This is one of the topics of A 4. Cf. 73a35-73b24. This way of putting Aristotle’s condition on
premises highlights the fact that Aristotle is assuming all statements in a scientific demonstration
to be put in the subject-predicate form required by his theory of syllogistic.

3473a35-73a39. Here I deviate slightly from Barnes’s translation: whereas Barnes translates “kath’
hauto” as “in itself”, I am following a somewhat older tradition of translating it as “per se”.

35See (Aristotle, 1993, p.112). Again, I am replacing Barnes’s “in itself” with “per se”.
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sided holds of triangle per se since all triangles are three-sided and the definition of

“triangle” states that a triangle is a three-sided polygon. It is rather more difficult

to find uses “per se” indicated by (2). According to Barnes, one of the best examples

from AnPst comes at B 16 where Aristotle predicates “eclipse” of “the earth’s being

in the middle”, since whenever we have the earth in the middle what we have is an

eclipse, and moreover the definition of (lunar) “eclipse” will mention the fact that the

earth is in the middle.36

On the uses of “per se” indicated by (1) and (2), what we have is a predicate’s

holding of a subject as a matter of definition. This implies that the terms contained

in the premises of a demonstration must stand in a very tight conceptual relationship

with one another. Moreover, as Aristotle points out, it implies that that the premises

of a demonstrative syllogism are necessary (73b24).

The next technical notion we need in order to understand the argument of A 7

is that of the “kind” or “subject genus” (genos) of a science. Aristotle indicates at

A 28 that sciences are to be identified according to the range of objects or “subject

genus” which practitioners of the science investigate (87a39). Geometry is the study

of spatial magnitudes such as lines, points, and solids; arithmetic is the study of

units. If units were (per impossibile) the very same things as spatial magnitudes,

then arithmetic and geometry would constitute a single science.37

Somewhat more formally, we can consider the subject genus of a science as con-

36Cf. 98b22. As I indicate in the main text, Aristotle presumably has a lunar eclipse in mind; the
point is that during a lunar eclipse the earth is standing between the sun and the moon.

37Of course, in light of the development of analytic geometry it may seem less odd to suggest that
numbers and spatial magnitudes might be identical. It is clear, however, that Aristotle thought they
were different. See 75b5 and p. 131 of Barnes’s commentary.
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sisting of two things: (a) the most general class of objects studied by a science

(e.g., spatial magnitude), along with the various subsets of that class (e.g., polygon,

triangle, right triangle, or prism, rectangular prism, right rectangular prism); (b)

the attributes which hold per se of any subset of elements indicated in (a).38 The

aim of the scientist is to discover the character of the elements in (a) by providing

demonstrations that those elements have certain properties per se (75a42). Hence the

vocabulary of a single science contains just those terms which designate subclasses of

(a) or their per se properties, since these are what are needed for the demonstrations

of that science.

An important feature of Aristotle’s view of subject genera is that they are natural

and non-arbitrary. Aristotle hints at this view in AnPst when he writes that “existent

things belong to different kinds” (gene).39 In his discussion of the subject genus,

McKirahan mentions a number of places in the Metaphysics where Aristotle makes

such claims as that “being falls immediately into genera; and therefore the sciences

too will correspond to these genera.”40 Hence we might say that it is not up to the

whim of the scientist to study this or that set of objects; rather, the scientist studies

kinds of things marked off as such by their very nature. Although I do not know

any place where Aristotle says so explicitly, an implicit part of this view seems to

38Aristotle gives slightly different characterizations of the subject genus at different points in
AnPst. For a list of these characterizations along with discussion, see (McKirahan, 1992, pp. 57-60).
My description of the genus is most in line with Aristotle’s statement at 87a39: “A science is one
if it is concerned with one kind—with whatever items come from the primitives and are parts or
attributes of them in themselves” (kath’ hauta). Among the per se attributes mentioned here are
presumably the per se incidentals, i.e., attributes of objects which hold as deductive consequences of
the object’s definitions yet are not themselves part of the definition. For more on per se incidentals,
see pp. 113-114 of Barnes’s commentary.

39AnPst A 32, 88b2.

40See Metaphysics Γ, 1004a4, (Aristotle, 1984b, p. 1585).
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be that the subject genera studied by different sciences do not typically overlap. In

other words, if X’s are a part of the subject genus of some science S, then they will

not also be a part of the subject genus of some distinct science S ′; or if A is a per se

attribute of some object O in science S, then A will not be a per se attribute of any

object considered by a distinct science S ′. As we will see, this premise plays a crucial

role in the argument in A 7.

Let us turn to that argument now. What Aristotle aims to show is that all of the

terms appearing in the premises of a demonstration must be names for items in the

same subject genus, so that a demonstration of a conclusion stated in the terms of

one science could not include premises containing terms from a distinct science. If a

demonstration did contain terms from more than one genus, then that demonstration

would “cross” (metabainein) subject genera. Aristotle wants to prove that this is

impossible. If he is successful, then this will have the further consequence that the

theorems of one science S can play no role in the demonstrations of a distinct science

S ′, since of course for there to be any theorems of S occurring in demonstrations from

S ′ there must at least be one term from S occurring in the demonstration. This a

particularly stark and precise way of showing that S cannot be in any way applied

by S ′.

The key premise of Aristotle’s argument comes at 75b11-14, where Aristotle says

that “the extremes and the middle terms must come from the same kind, since if they

do not hold in themselves [kath’ hauta], they will be incidentals.” This statement is

couched in Aristotle’s theory of syllogistic and so requires some additional explana-

tion. According to Aristotle, deductively valid arguments generally have two premises
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and a single conclusion; the premises are statements in subject-predicate form, and

the subject or predicate term from one premise reappears in the other premise. The

best known example goes by the name “Barbara”: “All A’s are B’s, all B’s are C’s,

hence all A’s are C’s.” Here the term “B” is common to both premises, which is

Aristotle’s criterion for being a “middle term” (meson). The terms “A” and “B”

are called the “extremes” (akra). Now suppose, as Aristotle does, that the middle

term “B” and the extremes “A” and “C” of a deduction do not come from the same

subject genus.41 Aristotle is arguing in the passage just cited that in such a case,

“B” will not stand in any per se relationship to the other terms: that is, it will be

false that A holds of B per se, that that C holds of B per se, etc.42,43 But as we

recently observed, in order for a deductively valid deduction to constitute a scientific

demonstration, the premises of a demonstration must state per se relationships hold-

ing among the predicate and subject terms. Therefore there can be no demonstration

from the terms “A,” “B,” and “C”.

We just argued for the following conclusion: if the extremes and the middle terms

come from different subject genera, then there can be no demonstration. We might

41When Aristotle speaks of terms coming from the same subject genus, what he presumably means
is that the terms name some group of elements or attributes in the genus. Aristotle often fails to
distinguish use and mention, and he appears to be guilty of that here. In what follows, when I speak
of terms coming from a subject genus, I will mean by that the term names some group of elements
or attributes included in the genus.

42What Aristotle says, in a somewhat elliptical fashion, is that if the extremes and middle term
do not come from the same genus, then the terms of the premises of the deduction will hold only
incidentally (“symbebekota”; translators sometimes render this as “accidentally”). At this point in
AnPst Aristotle appears to use “incidental” as incompatible with “per se”; however, only several
lines above Aristotle seems to mention the per se incidentals: at 75b1 Aristotle describes the demon-
strations of a science as making plain the “items incidental to [the subject genus] per se”. For more
on the per se incidentals, see footnote 35 above.

43In what follows I will sometimes talk of two terms A and B failing stand in any per se relationship
to each other. This just means it is false that A holds of B per se and vice-versa.
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be able to make the result more intuitive by arguing for the contrapositive: if there

is to be a demonstration, the extremes and the middle term must all come from the

same subject genus. Suppose, then, that we start with two terms “A” and “B”, and

we would like to form a demonstration from them. This is only possible if they stand

in a per se relationship to one another, in which case they must come from the same

genus G.44 If we want to form so much as a deductively valid argument from “A” and

“B”, we must generate a further premise which contains either “A” or “B”. Without

loss of generality, suppose we generate a premise containing “A” and an additional

term “X”. If A and X are to relate to one another per se, then once again “A” and

“X” must come from the same subject genus, viz., G. Hence all of the terms of the

deduction must come from the same genus, G, if there is to be a demonstration.

One corollary of this argument is that if we have a mathematical theory M and

some non-mathematical scientific theory S, no terms from M can appear in demon-

strations from S, so that a fortiori no demonstrations from S make use of theo-

rems from M . Of course, there is no special reason to choose a mathematical and a

(non-mathematical) scientific theory. We could just as well choose two mathematical

theories, which is what Aristotle himself actually does at A 7 when he says that you

cannot prove something geometrical by arithmetic (75a39). Some of the authors men-

tioned in the introduction to this chapter are motivated to emphasize the putative

inapplicability of mathematics to natural science because in the period they write

44In case this is unclear: suppose, without loss of generality, that A holds of B per se. “B” is
a name for items in some unique subject genus; call this genus “G”. “A” then designates a per
se attribute of the items designated by “B”. But a genus includes the per se attributes of items
contained in the genus, so that “A” also designates something in the genus G. From this it follows
that “A” and “B” both belong to the same genus.
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about—the 17th century—applications of mathematics to natural science exploded in

number and importance. One way of accounting for this change is to say that 17th

century natural philosophers came to reject the eschewal of mathematical methods

which dominated natural philosophy in the Aristotelian tradition. We can in turn

account for that eschewal by reference to such texts as A 7 of AnPst, where Aristotle

himself supposedly banishes the use of mathematics in natural philosophy. As I em-

phasized in §2.1, I regard this use of AnPst as illegitimate.45 Immediately after the

general argument we just rehearsed, Aristotle explicitly mentions exceptions to the

general rule: optical proofs employ geometrical reasoning, and proofs in harmonics

employ arithmetical reasoning (75b14). The kind crossing puzzle is to figure out how

these exceptions are possible. That is, the argument rehearsed above did not seem

to be merely general: it seemed to be exceptionless. So how can Aristotle hold that

nevertheless in some cases, one scientific theory manages to apply to another? This

is the question I will try to answer in the next section.

2.3 Defusing the Puzzle

Aristotle gives a hint of an answer at A 7 when he says that the subject genera

of two sciences “must be the same, either simpliciter or in some respect” if a demon-

stration is to cross genera (75b9). What this suggests is that at least in some cases,

45A further unhappy consequence of this view is that it forces Aristotle to hold that material
objects can only have their shape, or other properties described by a mathematical theory, acciden-
tally: since terms for shapes are mathematical terms, whereas terms designating material bodies are
natural terms (from some distinct genus), there can be no per se relationship among such terms. Cf.
Maull op. cit., loc. cit. We have already seen Aristotle contradict this view explicitly by maintaining
that the shape of the heavens is of necessity spherical. I hold this to be further evidence that the
reading of Aristotle considered here is a misinterpretation.
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distinct sciences can overlap with one another in the sense that they treat some of

the same items or treat items as having some of the very same properties per se (cf.

76a14). We saw just this sort of thing in §2.1: whereas geometry treats of lines in

abstraction from all material conditions (for example, location in physical space),

optics treats of certain lines—chiefly visual rays—and it treats them as being located

in the space in front of a viewing subject. Despite the differences in the way optics

and geometry consider lines, lines are part of the subject genera of both sciences.

To return to an example from §2.1, spheres form part of the subject matter of both

geometry and astronomy; this is because many celestial bodies, including the stars

and the heaven as a whole, are spherical in shape.

Aristotle’s notion that the subject genera of different sciences might overlap or

“be the same” in a qualified sense is meant to allow there to be demonstrations

which contain terms and premises from different sciences. Consider, for example, the

following argument:

(α) Visual rays are lines.

(β) A line is length without breadth.46

∴ (γ) Visual rays are lengths without breadth.

I claim that nothing prevents (α) - (γ) from being a demonstration according to the

strictures of AnPst, and I consider it likely that Aristotle would have regarded it as

such. Premise (α) is grounded by the definition of “visual ray”, which runs roughly as

46This is definition of “line” given in Euclid’s Elements. For the original Greek with translation,
see (Thomas, 1939, p. 437).
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follows: “a visual ray =df a line containing one point at the viewer’s eye and a distinct

point somewhere in the viewer’s visual field.” Thus line would hold of visual ray per

se, and “All visual rays are lines” would be a suitable premise for a demonstration.

Premise (β) is cribbed from Euclid’s Elements and is the definition of “line” that

appears there; hence (β) is an acceptable premise for a demonstration if there ever

was one. Moreover, the premises seem to be explanatory of the conclusion: visual

rays are lengths without breadth because they are lines. Here we have another case

congenial to Aristotle in which the explanation is contained within the superordinate

science. Having convinced ourselves that (α) - (γ) is in fact a demonstration, we

observe that nonetheless “visual ray” does not come from the same subject genus as

“line” and “length without breadth.”

One might object to the analysis of (α) - (γ) just given by pointing out that if line

holds of visual ray per se and if a subject genus includes the per se attributes of the

items it researches, then the subject genus of optics also includes lines. Moreover, if

having length without breadth is a per se attribute of lines, then this attribute is part

of the subject genus of optics as well. But then all of the terms in the demonstration

do, after all, come from the same subject genus, so that (α) - (γ) is not an instance

of kind crossing.

There are several ways we might respond to this objection while trying to make

sense of Aristotle’s statement that kind crossing does occur in some cases. First,

we might grant that although visual rays, lines, and lengths without breadth are all

part of the subject genus of optics—so that “visual ray,” “line,” etc. are all properly

speaking optical terms—this does not prevent “line” or “length without breadth”
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from being mathematical terms as well. Earlier we encouraged the assumption that

each type of thing falls naturally into one genus and therefore into the domain of

exactly one science. However, it seems clear that in certain cases, the subject genera

of sciences do not relate to one another in that way: the very sort of item studied

by one science may also fall within the domain of investigation of another science.

Because visual rays are lines, lines fall under the subject genus of optics. However, we

all associate the term “line” more with geometry than optics, so the argument given

in (α) - (γ) does look as if we switch topics from optics to geometry. On this way of

responding to the argument of the last paragraph, it turns out that genuine cases of

kind crossing never happen, though they do sometimes appear to happen. Aristotle’s

statement that kind crossing sometimes occurs is just meant to point out this latter

fact.

The reaction just considered has the defect that it turns kind crossing into a merely

apparent phenomenon, and some of Aristotle’s remarks in A 7 give the impression

that the phenomenon is more than just apparent. One way of ensuring that genuine

kind crossing occurs is to interpret Aristotle’s use of “subject genus” slightly differ-

ently. Aristotle often speaks as if the subject genus only contains what I labeled as

“(α)” above, viz. the most general class of objects studied by a science (e.g., spatial

magnitude), along with the various subsets of that class (e.g., polygon, triangle, right

triangle, or prism, rectangular prism, right rectangular prism).47 The aim of the sci-

ence remains the demonstration of per se attributes of subsets of elements from (α),

but these attributes are not themselves part of the subject genus. On this reading,

47For a guide to the textual evidence on the meaning of “genos”, see (McKirahan, 1992, pp.
57-60).
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the subject genus of geometry will be spatial magnitude whereas the subject genus

of optics will be certain aspects of visual perception. Some of the demonstrations

of optics will show that items studied in geometry hold per se of items in optics, as

for instance when the student of optics demonstrates that all visual rays are lines.

But this does not make lines part of the subject genus of optics, as is shown by the

fact that the student of optics is not interested in the attributes of lines per se but

only of certain lines (especially visual rays). More generally, the terms of optics and

geometry will be rigidly separate in the sense that any one term belongs at most to

one of the two sciences; nonetheless, items designated by terms coming from different

genera can relate to one another per se.

I am not aware of any stretch of AnPst which allows us to establish Aristotle’s

opinion on the matter: that is, whether Aristotle allowed distinct sciences to share

terms but did not allow genuine kind crossing, or whether he allowed genuine kind

crossing (hence terms from different genera relating to one another per se) but barred

the sharing of terms between sciences. That he adopted some such view is guaranteed

by his explicit assertions that one science can at times apply another science in its

demonstrations.48 I will not attempt here to give further evidence for one view over

the other, especially in light of the fact that the two views seem to be mere verbal vari-

ants on one another: one view defines “subject genus” so as to include all of the items

which hold per se of any other items in the genus, the other defines “subject genus”

48I suppose it is possible that Aristotle condoned both the sharing of terms between sciences and
genuine kind crossing; I do not mention this possibility because it lacks theoretical simplicity. The
only position which Aristotle really cannot adopt is that sciences do not share terms and there is no
genuine kind crossing, since in this case the application of, e.g., arithmetic in harmonics is a logical
impossibility.
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more narrowly, but on either view (α) - (γ) counts as an acceptable demonstration.

Instead, I want to consider a difficulty raised by either of the views just considered:

Given that sciences can share terms, or given that terms coming from distinct sub-

ject genera can relate per se to one another, what is the point of Aristotle’s general

prohibition on kind crossing? For if terms from distinct sciences can relate per se to

each other—as I will henceforth suppose for convenience of expression—then it seems

there is no special difficulty with any one science applying any other, making use of

the other in its demonstrations, etc. In that case, it seems that Aristotle’s so-called

“kind crossing” prohibition doesn’t really bar us from doing anything whatsoever.

To see Aristotle’s intent in laying down the kind crossing prohibition, we must

first recall Aristotle’s general viewpoint, which is that being divides into different

natural kinds which constitute the domains of investigation of the natural scientist.49

Even though we do in some instances get terms from distinct sciences relating per

se to one another, Aristotle seems to think this is an exception to the general rule.

Hence it is true for the most part that terms coming from different subject genera do

not relate to one another per se. We should also observe that Aristotle only seems to

allow terms from distinct subject genera to have per se relations when one subject

genus is in a sense a proper part of the other. Terms of optics relate per se to terms in

geometry because the objects studied by optics—visual rays etc.—are instances of the

more general type studied by geometry, namely spatial magnitude. Hence Aristotle’s

admission that kind crossing occurs in cases of subordination does not go against the

49Much of the evidence for this reading of Aristotle comes from Metaphysics Γ. On the topic
of the kinds or genera which form the subject matter of the individual sciences, see the relevant
paragraphs of the preceding section of this chapter.
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metaphysical view that, at least at a very general level, the kinds into which reality

divides really are a partition of reality; terms belonging to different kinds taken at

a high enough level of generality presumably do not stand in per se relations to one

another.

It is also helpful in understanding the point of Aristotle’s general prohibition on

kind crossing to consider the uses Aristotle makes of that prohibition in AnPst. The

first use comes already in A 7 when Aristotle writes that in geometry one cannot

prove “anything that holds of lines not as lines and as depending on the principles

proper to them—e.g. whether straight lines are the most beautiful of lines” (75b18).

Aristotle is pointing out here that the question of whether lines are beautiful or not

is not demonstrable in the setting of geometry, since geometry has only to do with

those attributes of lines contained in their definitions, along with any attributes we

can demonstrate geometrical items to have starting from those definitions. As we saw

above, a line is length without breadth, and this definition has no geometrical conse-

quences whatsoever for whether lines are beautiful or not. It follows that “pretty”,

“ugly”, and other terms of aesthetic appraisal will not stand in any per se relationship

to geometrical terms and are thus outside the domain of geometry entirely. What

the kind crossing prohibition points up in this context is that the practitioner of a

science only investigates the attributes of elements of the subject genus which he can

show to be per se and necessary. Any other attributes are irrelevant (cf. 77a40).

A second use Aristotle makes of the prohibition on kind crossing is in arguments

that there is no master science from whose first principles one can prove the first

principles (and hence the conclusions) of all the other sciences (76a17). The idea of
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Aristotle’s argument is that in order for the master science to prove the conclusions of

the other sciences it must generate demonstrations which contain terms borrowed from

those sciences. But in that case the demonstration would have crossed kinds, which

Aristotle has already characterized as illegitimate. If Aristotle does allow for kind

crossing in some instances, as he clearly appears to do, then this flat footed rejection

of a master science is unwarranted. One could reasonably object to Aristotle that all

the other sciences are subordinate to the master science, and this is what allows the

master science to prove their first principles.

It is important to recognize that the present objection holds regardless of whether

(as I have been supposing) Aristotle took the mechanism of kind crossing to be

terms in different sciences standing in per se relations with each other. Nonetheless,

Aristotle’s explicit requirement that premises of a demonstration contain terms which

stand in per se relations to each other might give Aristotle ammunition against the

present objection. Aristotle might argue as follows: a master science capable of

proving the first principles of everything would have to have the universal subject

genus, i.e., it would have to be an investigation into the per se attributes of everything

that exists. But existents qua existents have very few per se attributes; for instance,

none of the items of geometry hold of existents per se, since there are many things

which aren’t geometrical objects at all (e.g., the color red). But in this case, the

master science will not be able to prove the first principles of geometry; a fortiori, it

will not be able to prove the first principles of everything else.

The last few paragraphs indicate that the force of Aristotle’s prohibition on kind

crossing is to emphasize the parochial nature of individual sciences. Anything which



Chapter 2: Aristotle 65

does not stand in a necessary and definitional relationship with the items in a science’s

subject genus falls completely outside that science’s domain. This is compatible with

the view that in some limited number of cases—such as the case of geometry and

optics—the subject genera of two sciences may overlap or “be the same” in a qualified

sense.

2.4 Conclusion

Although AnPst has encouraged many readers to regard Aristotle as rejecting

mathematical methods in empirical inquiry, I have argued that this is a misinterpre-

tation. On Aristotle’s overall picture of the workings of science, it is true that the

practitioners of a science consider a limited range of objects and a correspondingly

limited range of attributes. Moreover, in most cases the subject genera of distinct

sciences do not bear a close enough relationship to each other to support one science’s

making an application of the other. Nonetheless, in light of the stunning successes

achieved by mathematical pursuits in optics, harmonics, astronomy, etc., Aristotle

repeatedly makes explicit exceptions for areas of natural science to apply branches

of pure mathematics. Good interpretations of AnPst must not render these appli-

cations unintelligible. In this chapter, I have suggested how Aristotle accounts for

these applications given both the explanatory resources and the technical constraints

of AnPst.
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Galileo

Regardless of Aristotle’s own view of the relationship between mathematics and

the natural sciences, it must be acknowledged that 16th century Aristotelians made

use of Aristotle’s doctrines and texts to challenge the applicability of mathematics.

In his Dialogue Concerning the Two Chief World Systems, Galileo signals that he

intends to engage one of those challenges when he puts the following words in the

mouth of Simplicio, the representative of the Aristotelians in the Dialogue:

After all, Salviati, these mathematical subtleties are true in the abstract,
but applied to sensible and physical matter they fail to correspond. For
instance, mathematicians may prove well enough from their principles
that a sphere touches a plane at a point. . . but when it comes to matter,
things happen otherwise. What I mean about these angles of contact and
ratios is that they all go by the board for material and sensible things.1

As I discussed in §1.1, a number of philosophers in the Aristotelian tradition had

expressed views like Simplicio’s,2 and even today Simplicio’s objection can sound

1See (Galileo, 1967, p. 203) and (Galileo, 1998a, p. 239). I have made some modifications to
Drake’s translation.

2In the present chapter we will primarily consider Alessandro Piccolomini and Benedict Pereira,
two Jesuit Aristotelians closer to Galileo’s own time.
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plausible. After all, many philosophers do accept that geometric proofs suffice to

establish the truth about geometric objects. On the other hand, if we put a spherical

body on top of a flat surface, or if we draw a circle and a line tangent to it on the

blackboard, we are apt to see that these things do not touch each other at a single

point.3 Such occurrences may convince us, as Simplicio is urging, to take a skeptical

attitude towards geometry as a guide to nature.

Through Salviati, his mouthpiece in the Dialogue, Galileo gives a lengthy and

elaborate reply to Simplicio’s objection. In §§3.2 – 3.3 of this chapter I provide an

analysis of Galileo’s reply. Although other authors have discussed the same passage

in Galileo, I believe that my analysis is novel in key respects. In particular, I offer

a detailed account of how Galileo’s responses to Simplicio’s philosophical criticisms

bear on our evaluation of the physical argument which prompts them.4 In §3.4, the

final section of the chapter, I argue that reflection on Galileo’s reply can provide us

with several lasting insights into the question of the applicability of mathematics:

First, Galileo gives powerful reasons for holding that despite their initial plau-

sibility, views according to which a sphere touches a plane at a point in geometry

but not in nature are untenable. More importantly, Galileo suggests a new criticism

on behalf of opponents of the applicability of geometry which saves what is valuable

in Simplicio’s original objection, viz., the criticism that geometric points, lines, and

surfaces do not exist in nature.

3When I try to produce a line tangent to a circle on paper or on a computer screen, I tend to
find that either they do not touch or that they touch over a very small line.

4I have been especially helped by the discussions in (Feldhay, 1998), (McMullin, 1985), and
(Palmerino, 2001). Although my focus in this chapter is not in how my interpretation of Galileo
differs from theirs, I will indicate some points of difference in the footnotes.
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Second, Galileo’s reply to Simplicio illustrates the point emphasized in Mark

Steiner’s work on the applicability of mathematics that the phrase “application of

mathematics” does not pick out a unique concept; there are several notions of an

application of mathematics one ought to distinguish.5 In particular, one should dis-

tinguish a deductive notion and a descriptive notion.6 Drawing this distinction helps

us to interpret the text of the Dialogue, since parts of Galileo’s response play the

role of defending the deductive, and others the descriptive applicability of geometry.

Moreover, consideration of how the two notions relate in Galileo’s discussion sheds

light on both.

Finally, Galileo offers several strategies for overcoming the objection that there

are no geometric points, lines, or surfaces in nature. One strategy is to argue that

the objection assumes either an overly narrow conception of geometric objects, or

an overly narrow conception of nature, or both. Another is to defend the legitimacy

of idealizations which employ geometric approximations. In what follows we will

examine how Galileo employs both these strategies in order to surmount Simplicio’s

objections.

3.1 The Extrusion Argument

To appreciate Simplicio’s objection and Galileo’s response to it, one must under-

stand something about the physical argument to which it is an objection. Following

Palmieri (2008) and others, I will refer to the physical argument as the “extrusion”

5See (Steiner, 1998, Chs. 1-2) and (Steiner, 2005).

6I explain these notions in §3.4.
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argument. Out of considerations of space I will provide a somewhat simplified version

of that argument here.7 The aim of the argument is to show that even if it is granted

to the Copernicans that the Earth spins daily around its own axis, nonetheless heavy

bodies resting on the surface of the Earth would remain at rest (so long as they are

not otherwise acted on). If successful, the extrusion argument would defend Coper-

nicanism against the objection that if the Earth were rotating, any bodies resting on

the Earth’s surface would be thrown into space.

Galileo puts the extrusion argument into the mouth of his representative, Salviati,

who reasons along the following lines: Suppose that the Earth is rotating and consider

some body at rest on its surface at an initial time. Because the Earth is rotating, the

body does possess an impetus to be thrown in the direction of the line tangent to the

point of contact of the body with the Earth. The body also has a natural impetus

to fall towards the center of the Earth. In order for the body to remain at rest on

the Earth’s surface, the tendency of the body to fall towards the center of the Earth

must dominate its tendency to be thrown off. In other words, let us suppose that

some interval of time has elapsed, and let us further suppose that the body’s motion

towards the Earth’s center would have sufficed to bring it back to the surface if it had

been projected some distance along the tangent. In that case, the body will simply

have remained on the surface over the interval.

7In particular, I will leave the weight of the body out of consideration. The full text of the
extrusion argument occurs at (Galileo, 1967, pp. 188-203) with Drake’s commentary at ibid., pp.
478-479; for the original Italian see (Galileo, 1998a, pp. 203-219). The extrusion argument has been
discussed at length by prior authors. A fuller sketch of Galileo’s argument appears in (Gaukroger,
1978, pp. 189-198). For more detailed analyses of the argument and diagnoses of its flaws, see (Hill,
1984) and (Finocchiaro, 2003). Palmieri (2008) defends the view that Galileo’s extrusion argument
is in fact plausible given Galileo’s understanding of the angle of contact between a circle and a line
tangent to it, so that the defect in Galileo’s argument only becomes apparent when contrasted with
a more recent, Newtonian analysis of the situation. For further sources, see ibid., pp. 446-447 n. 4.
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Figure 3.1: Horn angle BAX formed by the surface of the Earth AX and the tangent
AB. As we approach A from B, the distance to the Earth vanishes.

Salviati moves on to argue that so long as the body has any tendency to fall

towards the center of the Earth, no matter how small, this would in fact suffice to

return it to the Earth if it were projected some distance along the tangent. For

suppose some body is at rest at point A on the Earth’s surface AX (see Figure 3.1).

If the body were projected along the tangent AB, it would move with constant speed

in the direction of the tangent. Therefore equal times may be represented by equal

distances along AB; choosing point K twice as far from A as point H is, we may say

that one unit of time has elapsed in the body’s moving from A to H and another unit

in moving from H to K. We will also choose F so that AH = 2AF.

Galileo represents the downward speed which the body would have acquired in

free fall by parallel line segments perpendicular to AB and included in angle BAE: in

particular, FG, HI, and KL. That is, at the time the body has arrived at H, the body

would have reached a speed corresponding to segment HI in free fall, whereas it would
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have reached a speed corresponding to KL by the time it had reached K. This method

of representation respects the key idea that in cases of constantly accelerated motion

such as free fall, equal increments of speed are added in equal times. For we see that

since AK = 2AH and since triangles AHI and AKL are similar, KL = 2HI. Or, in

other words, in one unit of time the body has traveled to H and would have acquired

downward speed HI in free fall, and in two units of time the body has traveled to K

and would have acquired downward speed 2HI in free fall.

So far we have only compared how far the body moves along the tangent AB versus

how much speed the body would have acquired in free fall over the same period of

time. Now we must compare how much speed the body would have acquired in free

fall with the distance of the body from the surface of the Earth at the corresponding

time. As we approach the initial time, we consider the body at K, at H, and at F.

Taking the speed KL as a unit, the corresponding speeds are 1, 1
2
, and 1

4
. In fact,

each time we decrease the distance from A by half, the speed again decreases by

half. However, by inspection of the diagram we see that the distances to the Earth’s

surface KX, HY, and FZ are decreasing much faster; that is, HY is much less than

half of KX, and FZ is much less than half of HY.8 We may continue to decrease the

distance from A by one half, and each time the distance from the surface of the Earth

will decrease by much more than one half. Therefore at some time when the body is

sufficiently close to A, the speed acquired in free fall will suffice to return the body

8Strictly speaking, Galileo seems to be getting the distances to the surface of the Earth wrong
here. The distance to the Earth at K is not given by KX but by the line segment whose first point
is K and whose other point is the place of intersection between the circle and the line connecting K
with the center of the circle. However, for very small quantities AK, AH, AF, etc., the difference
between the two representations of the distance to the Earth vanishes. For now we will ignore that
difference.
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to the Earth’s surface. It follows that the body in fact stays at rest upon the surface.

The gist of the argument is well summarized by Salviati: “For the distance traveled

being so extremely small at the beginning of its separation (because of the infinite

acuteness of the angle of contact), any tendency that would draw it back to the center

of the [Earth], however small, would suffice to hold it on the circumference” (Galileo,

1967, pp. 194–195).

I have tried to formulate the extrusion argument in a way that renders its defect as

apparent as possible (at least from our post-Newtonian point of view).9 Salviati does

manage to relate the position of the body along the tangential axis to the amount of

speed the body would have acquired in free fall at the corresponding time. However,

Salviati never shows us any time at which the actual distance fallen equals or exceeds

the distance to the Earth’s surface; his argument simply never takes into account how

far the body falls. Whether the body actually does far fall enough depends on the

strength of surface gravity. We must take care not to get fooled by the diagram into

thinking otherwise: it may look as if the body does fall far enough, since, for example,

HI is longer than HY and contains HY as a proper part. But one must recall that HI

represents a speed, not a distance.

The fact that Galileo’s extrusion argument is flawed makes my enterprise here

somewhat delicate, since I cannot appeal to the argument as a witness to a successful

application of geometry to physics. Nonetheless, I believe that in defense of his

argument Galileo makes a number of general observations and suggestions which give

insight into the applications of geometry. Part of my task will be to reveal these

9See (Palmieri, 2008) for an analysis which attempts to render the extrusion argument plausible
from within Galileo’s framework.
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observations and suggestions.

In contrast to our contemporary assessment of the extrusion argument, the inter-

locutors of the Dialogue seem to regard the argument as at least valid if not sound.

This has as a consequence that over the course of the philosophical argument which

contains Galileo’s response to Simplicio and forms the target of my analysis, everyone

assumes the following conditional: if a line tangent to the surface of the Earth touches

the Earth at a point—thereby forming a horn angle with it—then bodies resting on

the Earth’s surface will not be thrown off by its daily rotation. The debate in effect

concerns whether one can establish the antecedent of this conditional, not whether

the consequent follows from it.10 For purposes of analyzing Galileo’s philosophical

argument—I will henceforth refer to it as “the target argument”—I will also accept

this conditional.11

3.2 Simplicio’s Attack and Salviati’s First Line of

Defense

As we saw in the opening lines of the chapter, Simplicio objects to the extrusion

argument with the criticism that “mathematicians may prove well enough from their

principles that a sphere touches a plane at a point. . . but when it comes to matter,

things happen otherwise.” Simplicio’s claim is that Salviati has made an illegitimate

10I do not mean to suggest that Galileo’s interlocutors are ignorant of the various further premises
on which the conclusion depends, only that they tacitly accept them. The only premise under
contention concerns whether a tangent to the Earth’s surface touches it at a point, so that if that
premise were granted, the conclusion would also be granted.

11The philosophical argument I am analyzing takes place at (Galileo, 1967, pp. 203-210) and
(Galileo, 1998a, pp. 219-227).
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appeal to the premise that a sphere touches a line tangent to it at a single point.

Salviati needs this premise to establish that a line tangent to the Earth touches

the Earth at a single point, thus forming a horn angle with it. Of course, one also

needs the premise that the Earth is a sphere. One might have expected Simplicio to

question the sphericity of the Earth, but he does not—at least not at first. Instead,

he focuses his attack on the mathematical premise, claiming that when it comes to

sensible matter, things happen otherwise than that a sphere touches a plane tangent

to it at a point.

Simplicio’s objection is not without precedent. As we saw in §§1.1 – 1.2, the Je-

suit Aristotelians Alessandro Piccolomini and Benedict Pereira had expressed similar

views in their works. Recall that Piccolomini had written in his commentary on the

pseudo-Aristotelian Mechanics that “Even if celestial bodies are free of every imper-

fection and are perfectly round, nonetheless they cannot be touched in this way by

a straight line without the contact comprehending some interval.”12 Pereira in his

De Communibus Omnium Rerum Naturalium Principiis had similarly denied that a

spherical substance touches a line at a point, even if a sphere per se does touch a

line at a point.13 Educated 17th century readers would presumably take the fact that

Simplicio’s objection echoes the views of Piccolomini and Pereira as a signal that

Galileo intends to engage with these thinkers in this part of the Dialogue.14

12For the original Latin and brief discussion, see Chapter 1 n. 18. See also Biringucci’s Italian
translation at (Piccolomini, 1582, p. 38).

13See §1.1 for a discussion of the relevant passage in Pereira’s work. More accurately, Pereira
asserts that while spheres per se touch a plane at a point, a circle which is in some substance does
not touch a straight line at a point. I think it is uncontroversial that Pereira means also to imply
that a sphere inhering in a substance does not touch a plane at a point. For further discussion of
Pereira’s view see also (Feldhay, 1998, pp. 92-94) and (De Pace, 1993, pp. 75-120).

14Galileo does not mention Piccolomini or Pereira by name, so the evidence that he is replying
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Piccolomini, Pereira, and like-minded Jesuit Aristotelians were among the chief

opponents of the mathematization of physics and therefore a natural focus of Galileo’s

polemical attacks. Piccolomini and Pereira had both endorsed the view that the math-

ematical disciplines (i.e., geometry and arithmetic) are not proper sciences, since they

fail to meet the criteria Aristotle laid down for sciences in the Posterior Analytics.15

Specifically, they argued that while proper sciences only contain demonstrations which

give the causes of conclusions demonstrated, the mathematical disciplines do not. A

plausible further conclusion—and one which Feldhay believes is evident in Piccolo-

mini’s work—is that disciplines such as astronomy which apply geometry cannot be

sciences either (Feldhay[1998], pp. 84-5). From a particular Jesuit Aristotelian view-

point, to mathematize physics would be to make it unscientific.16

Galileo does not engage explicitly in the Dialogue with Piccolomini’s or Pereira’s

arguments that mathematical disciplines are themselves not proper sciences. To a

great extent, the way Galileo engages with these thinkers is shown over the course of

our target argument. Part of my aim will be to reconstruct Galileo’s response to the

sort of position held by Piccolomini and Pereira.

The argument proceeds as Salviati provides a geometric proof that a sphere

to them in this part of the Dialogue remains somewhat circumstantial. However, it seems to be the
consensus view; see (Galileo, 1998b, p. 510) and (Feldhay, 1998, p. 129).

15For Pereira’s own statements, see (Pereira, 1586, p. 26); for discussion, see (Mancosu, 1996, p.
13) and (Feldhay, 1998, p. 92). For quotations of Piccolomini’s statements and a discussion of them,
see (Feldhay, 1998, pp. 83–84, 136–137). See Chapter 2 of the present work for further discussion
of the conception of science described in the Posterior Analytics.

16The debates surrounding the question whether the mathematical disciplines are proper sciences
is known as the debate “de certitudine mathematicarum” after the title of Piccolomini’s work De
Certitudine Mathematicarum Disciplinarum, an appendix to (Piccolomini, 1547). There is by now
a large literature in English about this debate; cf. (Mancosu, 1996, Ch. 1) and (Feldhay, 1998, §1).
For extensive further literature in English and other languages, see (Feldhay, 1998, p. 135 n. 9).
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touches a plane at a point. From the point of view of geometric rigor, Salviati’s

proof seems unobjectionable and not worthy of detailed interpretation. However,

several of Salviati’s remarks suggest that he means his proof to count as a scientific

demonstration in the sense of the Posterior Analytics. In defense of this reading, we

may note that Simplicio offers a proof of the lemma that a straight line is the shortest

curve between two points, but Salviati rejects Simplicio’s proof on the grounds that

its middle term is less well established than the conclusion. Such an argument would

run afoul of a necessary condition for a scientific demonstration.17 Moreover, Salviati

takes some pains to start his argument from the “definition” and “essence” of a sphere

(Galileo, 1967, p. 204); this would appear to be another move towards persuading an

orthodox Aristotelian that the criteria for scientific demonstration were being met.18

If Galileo were successful in giving a scientific demonstration that a sphere touches

a plane (or a line) at a single point, this should suffice to convince an orthodox Aris-

totelian that our judgment that the Earth touches a plane at a single point counts

as scientific knowledge—for an orthodox Aristotelian would hold that there is a sci-

entific demonstration that the Earth is a sphere.19 This, together with the geomet-

rical demonstration just given, would yield a scientific demonstration that the Earth

touches a plane (or a line) at a single point. Insofar as Simplicio’s objection is inspired

17This is the requirement that demonstrative understanding proceed from items that are “more
familiar than” the conclusions. This requirement ensures that one does not accept a conclusion as
known demonstratively on the basis of a demonstration whose premises are less well established than
the conclusion itself is. Cf. (Aristotle, 1993, pp. 2-3, 71b10-72a6).

18The demand is that the conclusions of a scientific demonstration proceed from premises in which
properties are predicated of their subjects per se. See (Aristotle, 1993, pp. 6-8, 73a21-74a4). For
Barnes’s commentary on this requirement, see ibid., pp. 112-114. For my own discussion of the
requirement see Chapter 2, especially §2.1.

19Aristotle argues that the Earth is a sphere at 297a8-298a20 in his De Caelo; cf. (Aristotle,
1984a, pp. 488-489).
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by Piccolomini’s worries that we cannot know scientifically that a sphere touches a

plane at a point, Salviati’s mathematical demonstration would serve to defuse those

worries. This suggests a strategy to use against opponents like Piccolomini: to show

on a case-by-case basis that the geometric theorems actually needed in physics have

scientific demonstrations in the sense of the Posterior Analytics.20 Galileo does not

pursue that general strategy here; for his immediate purposes it suffices to give the

one demonstration.

Simplicio does not make any statements concerning the scientific status of Salviati’s

geometrical demonstration that a sphere touches a plane at a point. Simplicio seems

to grant that the demonstration is fine by geometric standards, but he insists that

it proves the theorem “for abstract spheres, but not material ones” (Galileo, 1967,

p. 206). He illustrates this shortcoming of the proof by raising apparent counterex-

amples to the theorem taken from the material world: for instance, a metallic sphere

resting on a plate would either become deformed or mash the plate, causing the two

objects to touch over some surface with positive area. This is reminiscent of Piccolo-

mini’s statement about celestial bodies given some paragraphs ago. Simplicio also

points out that material spheres and planes are “hard to come by” (loc. cit.), and

this suggests a different kind of criticism of the premise that a sphere touches a plane

at a point which we will consider in a moment.

Salviati’s geometric demonstration now comes into play, for Salviati has shown

20It is unlikely that Galileo’s opponents would agree that Salviati’s mathematical demonstration
is scientific. They would likely object that since Salviati’s demonstration is a reductio ad absurdum,
it therefore cannot give the cause of its being the case that a sphere touches a plane at a point.
Nevertheless, I claim that Salviati’s Aristotelian rhetoric has the purpose of trying to persuade an
Aristotelian opponent that his proof is in fact causal. For more on the status of reductio proofs in
this debate, see (Mancosu, 1996, pp. 24-28).
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that any surface which touches a plane at more than a single point is a fortiori not

a sphere. If Simplicio’s supposed “metallic sphere” or Piccolomini’s celestial body

touches a plane at more than one point, then it is really no sphere at all. In this

way, Salviati has the resources to deny any putative counterexample to the geometric

theorem taken from the material world or otherwise. To put the point another way,

Salviati is now in a position to deny the alleged failure of what the geometers prove

to be the case about a given type of curve to hold of that type of curve in nature.

Any real evidence that a geometric theorem about (for example) parabolas doesn’t

hold of a given trajectory is ipso facto evidence that the trajectory in question is not

a parabola. It is emphatically not evidence that parabolas in nature fail to have the

properties which geometers prove them to have. The moral of Salviati’s lesson is that

Simplicio should not call such “metallic spheres” spheres in the first place: “[W]hen

you want to show me that a material sphere does not touch a material plane in one

point, you make use of a sphere that is not a sphere and of a plane that is no plane”

(loc. cit.).

Salviati points out that there is still a consistent position open to Simplicio which

was suggested by Simplicio’s remarks about material spheres and planes being hard to

come by. Simplicio can admit that if there were a material sphere and a material plane,

they would touch each other at a single point. This is shown by the geometric proof.

However, Simplicio can simultaneously deny that there are any material spheres or

planes whatsoever. Simplicio accepts this redescription of his position, saying that

this must be “the philosopher’s proposition” (ibid., p. 207).

Although Simplicio’s view is seen to be consistent by this point in the argument,
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it raises deep worries for anyone defending Galileo’s position in the Dialogue. First,

if Simplicio is correct then it follows that the Earth is not a sphere and the extrusion

argument does not go through. We will discuss this problem in the next section.

Moreover, we could presumably state Simplicio’s view more fully by saying that there

are no geometric points, lines, or surfaces in nature: no body has a geometric shape;

no body has a trajectory which is a geometric curve; etc. Informally speaking, this is a

view according to which the subject matters of geometry and physics are mismatched.

That Simplicio holds this view in general is suggested by the way he originally for-

mulates his objection: “After all, Salviati, these mathematical subtleties are true in

the abstract, but applied to sensible and physical matter they fail to correspond”. It

is further confirmed when Simplicio denies that the sphere, the pyramid, the shape

of a horse, or the shape of a grasshopper can ever be perfectly obtained in the ma-

terial world (ibid., p. 209). If one holds this position, one might plausibly conclude

that it is never appropriate to build arguments in physics which appeal to geometric

theorems—for there are no objects in nature for the geometer to reason about. All

that natural philosophers actually do is to mistakenly consider given material objects

to have geometric shapes and then draw conclusions about the objects which may or

may not be true. From this point of view, the proposal that physics be mathematized

looks disastrous.

Salviati attacks the view that the subject matters of geometry and physics are

mismatched head on by trying to show that Simplicio has an overly narrow conception

of those subjects. Salviati’s strategy at this point in the argument is inflationary : it

is to show that more belongs to the provinces of geometry and physics than Simplicio
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recognizes. Salviati begins by explaining the mismatch in a manner intended to be

congenial to Simplicio: it is “because of the imperfection of matter [that] a body which

ought to be perfectly spherical and a plane which ought to be perfectly flat do not

achieve concretely what one imagines of them in the abstract” (ibid., p. 207). Spelled

out a bit further, Simplicio seems to think that the geometer studies only a handful

of what we will call the “traditional shapes”—lines, conics, etc. The geometer’s

traditional shapes do exist in the abstract. But because material bodies are concrete

they are subject to many accidents, and therefore they never strictly have a traditional

geometric shape. But then it follows that geometry never studies any of the shapes

actually obtained in nature.

In response, Salviati tries to force Simplicio to recognize two new categories of

objects: abstract shapes above and beyond the geometer’s traditional shapes, and

concrete objects which either do have or at least may have the geometer’s tradi-

tional shapes. To find examples of the former, Salviati has Simplicio consider the ab-

stract correlates of the so-called “imperfect metallic spheres” and “imperfect metallic

planes” which Simplicio allows to exist in nature: “I tell you that even in the abstract,

an immaterial sphere which is not a perfect sphere can touch an immaterial plane

which is not perfectly flat in not one point, but over a part of its surface” (loc. cit.).

These abstract shapes Simplicio is being pressured to admit may resemble spheres

and planes quite closely, though it is important to distinguish them from spheres and

planes. Simplicio is also forced to admit that highly irregular shapes such as that of

a rock broken by a hammer exist, namely by pointing out any nearby rock broken

by a hammer (ibid., p. 210). Presumably these highly irregular shapes also exist in
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the abstract. The upshot Salviati seems to be pressing is that these non-traditional

shapes exist in the abstract as well as in the concrete, and moreover that there are

facts about these shapes such as what the locus of contact would be between such

shapes. The final suggestion, though Salviati is never explicit about it, is that it is

in principle open to the geometer to investigate these latter facts.

Salviati also wants to give Simplicio some probable reasons for thinking that some

bodies in nature actually do have geometric shapes, or at the very least that they may

have them. Part of this work is done when Simplicio admits that highly irregularly

shaped rocks broken by a hammer have whatever shape they have perfectly. This

shows that it is possible for some highly irregular shapes to exist in nature, since after

all the bodies with such irregular shapes are actual. Moreover, Salviati argues (ibid.,

p. 209), of all shapes it is easiest to obtain simple shapes like spheres, since one may

obtain a sphere to as high an approximation as one likes by, e.g., spinning a spheroid

in a circular hole which is slightly smaller than it. Sagredo, the third interlocutor

in the Dialogue, draws the conclusion: “[I]f of shapes which are irregular, and hence

hard to obtain, there is an infinity which are nevertheless perfectly obtained, how can

it be right to say that the simplest and therefore the easiest of all is impossible to

obtain?” (ibid., p. 210). The suggestion is that Simplicio’s assertion that there are

no material spheres or planes whatever oversteps his evidence.

In summary, Simplicio originally objected that there was a failure of geometric

theorems to hold of material, sensible objects. This is shown to be a confusion;

the apparent counterexamples to the geometric theorems rest on attributing some

shape to the material objects which they do not in fact possess. But there is a
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consistent and deeply troubling position lurking in the background: it is the view

on which no geometric points, lines, or surfaces (in general, geometric objects) exist

in nature. Salviati argues that this view is false, since (a) for any body there is an

abstract individual which corresponds to the material object’s shape,21 and (b) it is

possible, perhaps even probable, that some bodies do have some (simple) traditional

geometric shapes. We may therefore conclude that there are some shapes which exist

both materially, as the shapes of bodies, and in the abstract. Once we have arrived

this far, Salviati wants to drive home the point that whatever facts hold of a given

individual in virtue of its shape hold whether or not that individual is abstract or

concrete:

[W]henever you apply a material sphere to a material plane in the concrete,
you apply a sphere which is not perfect to a plane which is not perfect, and
you say that these do not touch each other in one point. But I tell you that
even in the abstract, an immaterial sphere which is not a perfect sphere
can touch an immaterial plane which is not perfectly flat in not one point,
but over a part of its surface, so that what happens in the concrete up to
this point happens the same way in the abstract: and it would be novel
indeed if computations and ratios made in abstract numbers should not
thereafter correspond to concrete gold and silver coins and merchandise.22

By this point in the argument, the lack of correspondence which Simplicio alleged

is supposed to have vanished. If two material objects have shapes which make for

21To reiterate, by pointing out the existence of abstract individuals corresponding to the shapes
had by material bodies, I believe Galileo is trying to persuade us that the shapes in question fall
at least in principle into the subject matter of geometry. (Finocchiaro, 2003, pp. 241) seems to
argue for a related but slightly different interpretation; namely, that Galileo is exhorting us to
adopt a regulative principle either to find or (if necessary) to invent a geometric representation
corresponding to physical situations. In any case, I believe Finocchiaro and I agree that Galileo is
urging an expansive conception of the scope of geometry. However, I think Finocchiaro does not
account for the role that idealization plays when finding precise geometric representations is not
feasible. See §3.3.

22See ibid., p. 207. I have modified Drake’s translation so that it better matches Galileo’s punc-
tuation. In particular, the colon before the last sentence of the passage indicates that Galileo took
it to be tightly connected to what came before.
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such-and-such surfaces of contact, then two abstract objects with the same shapes

have the very same surfaces of contact, and vice-versa.23 Simplicio’s alleged lack of

correspondence arose because he equivocated in his use of the word “sphere”.

3.3 Aggravated Problems for Salviati

Though Salviati’s response seems to handle Simplicio’s blanket rejection of the

application of geometry to physics rather well, it opens the door to serious objections

in the context of the extrusion argument discussed in §3.1. That argument took as

a premise that the Earth is a sphere, but someone might now object on Simplicio’s

behalf that the Earth isn’t really a sphere, as a glance towards the Alps should

confirm for all involved.24 “After all,” she might say, “we can’t go calling bodies

which aren’t perfectly spherical ‘spheres’, else geometric conclusions we might draw

on the assumption that these bodies are spheres might well lead us astray.”

Given the tenor of Salviati’s response to Simplicio described in §3.2, one can

perhaps imagine Salviati granting this objection and reformulating the extrusion ar-

23That the statement holds also in the “vice-versa” formulation is shown by corresponding geomet-
ric demonstrations. McMullin construes the sentence after the colon in the last quotation as showing
that Galileo assumes a further correspondence between geometry and the physical world, namely
“that the concepts needed to geometrize space and time are, in fact, the simple ones drawn from
everyday sense-experience, the ones for which Euclid had long ago provided a definitive grammar”
(McMullin, 1985, p. 252). Although I agree that Galileo takes physical space to be Euclidean, I do
not see how the quotation indicates that assumption. Moreover, McMullin writes that the quotation
shows that for Galileo “the primary qualities which characterize body are assumed to correspond
exactly to our everyday notions of space and time” (loc. cit.). On my reading, this misses an alleged
lack of correspondence which Galileo is taking very seriously: the lack of correspondence claimed by
one who believes that geometric objects do not exist in nature.

24Simplicio does not seem to want to reject the exact sphericity of the Earth at this point in the
Dialogue, perhaps because this would go against orthodox Aristotelianism. Earlier in the First Day
of the Dialogue, however, Simplicio does seem to reject the view that the Earth is perfectly spherical.
Cf. (Galileo, 1967, p. 69).



Chapter 3: Galileo 84

gument accordingly. Salviati would point out that although the Earth is not spherical,

it does have whatever shape it has perfectly, so that in principle there is some fact

of the matter for every point on the surface of the Earth what its contact with tan-

gent lines would be—supposing, that is, that there is a unique tangent defined for

each point on the Earth’s surface. To proceed in this manner, one would first need a

fully precise geometrical description of the Earth’s shape. One would then need some

geometric tools for investigating the tangents to all the points on the surface.

The problem with this way of proceeding is that it is wholly intractable—both

for the natural philosophers of the 1640’s and for us today. In the first instance,

there is the problem of generating a precise representation of the shape of the Earth.

The interlocutors in the 1640’s did not have any such representation, and arguably

we don’t either.25 Moreover, the question again arises whether the surface of the

Earth can really be considered a geometric curve: whether it can depends partly

on the actual shape of the Earth and partly on one’s notion of which curves count

as geometrical. As Carla Rita Palmerino helpfully reminds us (Palmerino, 2001, p.

402), in his earlier work The Assayer Galileo had drawn a distinction between regular

curves and irregular curves on which irregular curves seem to fall outside the scope

of geometry:

[R]egular lines are called those that, having a single, firm, and determinate
description, can be defined and whose accidents and properties can be
demonstrated. But the irregular lines are those that, not having any
determination whatsoever, are infinite and casual, and thus indefinable,

25For one thing, the surface of the oceans changes shape too quickly; by the time you had one fully
precise representation, the Earth’s shape would already be different. Even more static landscapes
might pose some difficulties: does anyone know what the surface of the Earth is at a suitably random
spot in the Gobi Desert or the Himalayas?
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and of which therefore no property can be demonstrated and nothing, in
sum, can be known.26

If the shape of the Earth’s surface is irregular in this sense—and in fact it seems to

be—then at any rate no human being could demonstrate or otherwise come to know

any of its properties. Since geometry is a demonstrative science, it follows that in this

case the shape of the Earth would not comprise any part of geometric investigation.

But this effectively reopens the question of the applicability of geometry to physics,

since it raises the possibility that the highly irregular shapes possessed by actual

bodies have no geometric definitions.

Although Salviati does not explicitly consider this line of objection, he seems

aware of it and offers what looks to be a response to it:

Do you know what does happen, Simplicio? Just as the computer who
wants his calculations to deal with sugar, silk, and wool must subtract the
weight of the boxes, bales, and other packings, so the geometrical philoso-
pher [filosofo geometra], when he wants to recognize in the concrete the
effects which he has demonstrated in the abstract, must deduct the im-
pediments of matter [impedimenti della materia], and if he knows how to
do so, I assure you that things are in no less agreement than arithmetical
computations. The errors, then, lie not in the abstractness or concrete-
ness, not in geometry or physics, but in a calculator who does not know
how to make a true accounting.27

In this passage, Salviati makes a dramatic switch of tactics in his response to

Simplicio’s objections. He is no longer trying to get Simplicio to grant the general

point that some bodies do have precise geometric shapes, nor is he trying to get

26Cf. loc. cit.; I am here using Palmerino’s translation. For Drake’s translation, see (Galileo,
1957, p. 241).

27See (Galileo, 1967, p. 207). This longer passage follows immediately upon the long passage
quoted at the end of the last section. I have made some changes to Drake’s translation.
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Simplicio to grant that the Earth’s shape is a geometric curve. Rather, he argues that

the proper way to assess whether the extrusion argument succeeds is to determine

whether the impediments of matter have been deducted, where this latter operation

is to be understood on analogy with the way a merchant has to make sure that he

has subtracted the weight of the packaging when he wants to determine how much

sugar he has (i.e., when he calculates the tare weight). Salviati’s new approach to

the problem is idealizing rather than inflationary, though it takes some work to see

what the idealizing approach amounts to here.

Koertge (1977) argues that “impediment” and “accident” are important technical

terms for Galileo and gives an analysis of Galileo’s use of such terms over the course of

his career. On Koertge’s analysis, one class of impediments to which Galileo repeat-

edly refers consists in the “discrepancies between the mathematical approximation

and the real situation” (ibid., p. 392). The discrepancy between the actual shape of

the Earth and that of a true sphere is one of Koertge’s examples. Another important

example is the discrepancy between so-called Galilean gravity, which is assumed to

pull along parallel lines towards the surface of the Earth, and real gravity, which is

assumed to pull along lines which converge at the center of the Earth. In keeping

with Koertge’s analysis, I take it that when Salviati speaks of the impediments of

matter in the passage cited above, he is referring to and thereby acknowledging the

discrepancy between the shape of the Earth and the shape of a true sphere. The

problem is then to see what we are being enjoined to do when we are urged to deduct

that discrepancy.

If we take Salviati’s analogy with the merchant seriously, then it would seem we
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need first to quantify the discrepancy, then to show that once the resulting quantity

is taken into account in our calculations the effects demonstrated remain the same

(i.e., bodies are not thrown off the surface of the Earth even supposing its daily

rotation). However, in the case at hand this looks to be a non-starter: if we cannot

obtain a precise geometrical or otherwise quantitative representation of the shape of

the Earth, then we also cannot obtain a precise geometrical or otherwise quantitative

representation of the difference between the Earth’s real shape and that of a sphere.

In the case of the merchant this is not a problem, since the merchant can easily weigh

the package and subtract the weight to find the quantity of sugar. Similarly, suppose

we are reasoning about a balance in Venice assuming Galilean gravity. If we know

the distance of Venice from the center of the Earth, we should be able to quantify the

difference in the force on the arms of the balance due to Galilean as opposed to real

gravity. It shows what a master polemicist Galileo is that he likens the very difficult

case at hand concerning the difference of the Earth’s shape from the sphere’s shape

to simple applications of arithmetic carried out by merchants every day.

Since Salviati cannot quantify the discrepancy between the Earth’s shape and the

sphere’s, he instead resorts to a non-geometric argument meant to show that if the

Earth does in fact have some highly irregular shape, it is nonetheless extremely likely

that any plane tangent to the Earth touches it in a single point, since “anyone who

got to the bottom of this matter would find that it is a great deal harder to discover

two bodies which touch with parts of their surfaces than with a point alone” (Galileo,

1967, p. 208). By having Salviati adopt this strategy, Galileo suggests a certain

account of why it is legitimate to take on the assumption that the Earth is a sphere



Chapter 3: Galileo 88

in the extrusion argument: it is legitimate because if it is objected that the Earth is

not really a sphere, it can be shown with high probability that the conclusions drawn

from that assumption which are actually used in the extrusion argument continue to

hold even allowing for deviations of the real world from that assumption.28

Astute readers of this part of the Dialogue will also recall that immediately after

Simplicio objects to the assumption that a sphere touches a plane tangent to it at

a point, he tells Salviati that he thinks a plane would contact the surface of the

Earth for “tens and hundreds of yards touching the surface of water, let alone the

ground, before separating from it” (ibid., p. 203). Salviati argues that in this case

it follows a fortiori that bodies resting on the Earth’s surface would not be thrown

from it, “for if even assuming that the tangent lies removed from the earth except

at one point, it has been proved that the projectile would not be separated, because

of the extreme acuteness of the angle of contact. . . how much less cause will it have

for becoming separated if that angle is completely closed and the surface united with

the tangent?” (loc. cit.). Thus the conclusion of the extrusion argument is taken to

hold whether or not a plane tangent to the Earth touches it at a single point—the

suggestion is that it holds whatever the shape of the Earth happens to be. This

points to a different account of why it is legitimate to assume the Earth is a sphere

28Palmerino argues for a different interpretation of Galileo’s argument, writing that on Galileo’s
view “[A] mathematical truth. . . amounts to a physical possibility. This is why Salviati’s answer
to Simplicio begins with a geometrical proof and ends with a probabilistic argument. Galileo’s
spokesman demonstrates, first, that the mathematical proposition ‘sphaera tangit planum in puncto’
[a sphere touches a plane at a point] is true. Then he moves on to show that the same proposition
holds true for physical objects also.” Cf. (Palmerino, 2001, p. 404). As should be clear from the
last section, I disagree with Palmerino’s analysis: The mathematical proof that a sphere touches a
plane at a point shows that the claim holds for all spheres, physical or otherwise. The probabilistic
argument described in this paragraph does not aim to show that it is likely that spheres in nature
touch a plane at a point, but rather that it is likely that whatever shape the Earth in fact has, the
contact of that shape with a plane (or a line) is a point.
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in the extrusion argument: because if it is objected that the Earth is not a sphere,

it can be demonstrated that the desired conclusion of the extrusion argument holds

even allowing for deviations of the real world from that assumption.

We can now formulate Salviati’s idealizing strategy in more general terms. Recall

that the general problem for the application of geometry in physics was raised by

the specter of a mismatch between the subject matters of geometry and physics.

The specific problem for the extrusion argument is raised by the worry that the

shape of the Earth is not a sphere and not even a geometric curve. The idealizing

strategy is compatible with there being a mismatch and hence no geometric curve

which corresponds to the shape of the Earth. However, the proponent of idealization

argues that we can in a physical argument assume away an alleged mismatch—for

example, by assuming the Earth to be perfectly spherical—provided that deviations

of the real world from our assumptions can be shown not to affect the outcome of the

physical argument. If by “shown” in the last sentence we really just mean “shown

to high probability”, we obtain a more relaxed position in the spirit of Salviati’s

probabilistic argument that planes tangent to irregular shapes touch the latter at

a point. If by “shown” we mean “deductively proved”, we obtain a much stricter

standard.

Before ending the analysis of the target argument I would like to consider two final

questions. The first question is whether Salviati has given convincing reasons to think

that the extrusion argument goes through even supposing that the Earth may be an

irregular spheroid. I contend that it does not. The key to the extrusion argument is

that the angle formed by the tangent of the projectile sitting on the Earth’s surface
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and the surface itself is either infinitely small (in the case of a horn angle) or zero (in

the case the two curves coincide over some interval).29 However, it is not difficult to

imagine that at some region on the Earth’s surface there is a sharp triangular edge.

We might imagine a perfectly sharp cliff. If we consider a ball sitting at the edge of

the cliff, the angle formed by the tangent to the projectile’s trajectory and the Earth’s

surface is positive, even 180 degrees. Under that supposition the extrusion argument

breaks down. This kind of counterexample to Salviati’s argument suggests that the

real issue is not whether the tangent touches the Earth’s surface at a single point.

The second question is: How well does Salviati’s argument respond to the wor-

ries Pereira and other Aristotelians are raising about the application of geometry to

physics? Salviati’s argument is the most powerful against an orthodox Aristotelian

opponent who is convinced we possess scientific knowledge that the Earth is a sphere

and becomes convinced by Salviati’s demonstration that we have scientific knowledge

that a sphere touches a plane tangent to it at a point (i.e., “scientific” in the sense of

the Posterior Analytics). Because Salviati’s proof proceeds by reductio it is unlikely

that many of Salviati’s opponents fall into that category. However, let us suppose this

worry were overcome and a scientific demonstration of the geometric theorem were

found. There remains the pressing worry of the unorthodox Aristotelians who endorse

“the philosopher’s proposition” that spheres are never to be found in nature, even

that no geometric curves exist in nature. Salviati first urges the Aristotelian to recog-

29Galileo usually talks of the angle formed by the tangent to the surface of the Earth and that
very surface. However, if the Earth has some sharp triangular region, strictly speaking it would have
no tangent at that point. However, that seems to be besides the point, since the desired tangent is
really the tangent to the trajectory of the projectile and it is reasonable to assume that this curve
does have a tangent.
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nize more geometric curves and more natural substances whose shapes correspond to

geometric curves. What Salviati does not supply the Aristotelian, however, are any

definitions either of the geometric curves or of the natural substances which could

serve as the premises of scientific demonstrations. The worry would then be just the

one Galileo raised in the Assayer that there could be no science of such curves, nor

any demonstrative knowledge that natural substances correspond to those geometric

curves. For instance, even if it is granted that the rock broken at random with a

hammer has some geometric shape, how will we ever be able to demonstrate that

the rock has that shape? That the rock has the shape it has seems to be acciden-

tal in a way which guarantees for the Aristotelian that there can be no science of

its shape. On the other hand, Salviati’s idealizing gambit is also unlikely to satisfy

Aristotelian worries, since all premises of scientific demonstrations are required to be

not merely true but necessary.30 Salviati seems to be recommending to us that under

certain circumstances we may employ false premises, but this is thoroughly contrary

to Aristotle and even to unorthodox Aristotelianism. Aristotelians of Pereira’s ilk

would consequently not be much persuaded by Salviati’s defense of the application

of geometry to physics.

3.4 Conclusions

Having discussed Galileo’s defense of the extrusion argument, I now want to reflect

philosophically on that defense, treating it as a kind of case study. While Galileo’s

30See (Aristotle, 1993, pp. 2-3 & 6). A 2 lays down the criterion that demonstrations proceed
from truths, and A 4 that they proceed from necessities.



Chapter 3: Galileo 92

defense fails to shore up the argument for which it was developed, I believe it succeeds

in other respects. Galileo makes a number of helpful suggestions about how to respond

to an opponent challenging the applicability of geometry. Moreover, reflection on

what Galileo does (sometimes without saying he is doing it) yields insight into some

general features of the problems of the applicability of mathematics.

First, recall what Galileo’s opponents had initially maintained: (i) geometric

demonstrations suffice to establish truths about geometric objects, e.g., suffice to

show that a sphere touches a plane at a point; (ii) geometric theorems are false if

understood as claims about things in nature, since for example natural spheres such

as stars or planets touch a plane in a surface. Galileo shows that even if such views

are granted to be consistent, they are nonetheless unstable. There is at least an ap-

parent problem with consistency, since those who accept geometric demonstrations

should also accept the demonstration that an object in nature which is granted to be

a sphere touches a plane at a point.31 But in that case they would appear to accept

that spheres in nature both do and do not contact a plane tangent to them at a point.

The natural way to avoid the inconsistency is to claim some kind of equivocation,

so that “being a sphere” or “having a shape” mean different things in geometry and

physics. Someone who avoids inconsistency in this way already gives up on the idea

that nature contains counterexamples to geometric results. Then the problem with

geometry is not that nature contains counterexamples to it, but rather that objects

in nature do not meet the requirements the geometer lays down on his objects. By

this point, we have arrived at a new criticism of the applicability of geometry: ge-

31Cf. §1.2.
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ometric objects—geometric points, lines, and surfaces—don’t exist in nature. This

latter criticism is more suitable as a challenge to the applicability of geometry than

the one with which we started, since it is internally coherent while conserving the

kernel of the original complaint.

Second, some readers of the Dialogue may be surprised to see that after he enter-

tains a general challenge to the applicability of geometry to physics, Galileo goes on

to a lengthy discussion of the proof of the theorem that a sphere touches a plane at a

point, a theorem he believes he needs in order to make the extrusion argument work.

Part of what motivates Galileo to do this, as we saw in the preceding paragraph, is

that Galileo can use the proof to reformulate his opponents’ objection. However, I

believe there is also a more ordinary justification for turning to the geometric proof

and its epistemic status. Galileo wants to use the claim that a sphere touches a

plane at a point as a premise in an argument, and so he is doing what is necessary

to exhibit his evidence for that claim. In other words, Galileo is defending what I

(following Mark Steiner) refer to as a “deductive application” of geometry: i.e., an

application witnessed by a deductive argument taking a theorem of geometry as a

premise and leading to a physical conclusion.32 Since issues of mathematical proof

and evidence are topics in their own right in the philosophy of mathematics, they tend

not to be considered also problems of the applicability of mathematics. Galileo’s dis-

cussion shows in a natural way how issues of mathematical proof and evidence are

32I am unsure whether my usage of “deductive application” precisely matches Steiner’s. Steiner
regards geometry as empirical, and so it may be that he does not view an application of geometry as
a true application of mathematics. Cf. (Steiner, 1998, p. 29 n. 16). For present purposes I will rely
on my own explanations of “deductive application” and “descriptive application” with apologies to
Steiner if my usage departs from his.
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also problems of the applicability of mathematics.

In order to build a deductive argument which witnesses a deductive application of

geometry, Galileo must relate the subject matter of geometry to the physical situation

he is addressing. The physical situation involves the Earth, bodies on or near the

surface of the Earth, and their motions. Galileo wants to use geometrical means to

say what these physical things are like, for example that the Earth is a sphere and

that the trajectory of a body thrown from the surface of the Earth is a line tangent

to the Earth. In doing so, Galileo is making a descriptive application of geometry:

i.e., he is relating the subject matter of geometry to the subject matter of physics for

purposes of describing (whether accurately or inaccurately) the physical world.

I have just said that in order for Galileo to make a deductive application of geome-

try, he must make a corresponding descriptive application of it. I think it is plausible

that the word “must” here indicates at least a practical necessity, even on the informal

conceptions of deductive and descriptive applications we have so far considered. One

might wonder whether the notions of deductive and descriptive applications could be

formalized, so that a corresponding formal result relating the two notions would be

possible. It is noteworthy that on a conception of logic as Aristotelian syllogistic—the

dominant conception of logic in Galileo’s time—there is a natural formalization and

a corresponding result. Take a deductive application of geometry to be witnessed

by a syllogism with one geometric premise and a conclusion containing at least one

physical term. Then take a descriptive application of geometry to be witnessed by

any predication relating a geometrical and a physical term. For there to be a syllo-

gism meeting the requirements of a deductive application of geometry, the premise
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of the syllogism which isn’t a theorem of geometry will have to relate one of the

theorem’s terms to a physical term in the conclusion. For the syllogism must have a

term common to both premises (a middle term), meaning that one of the geometric

terms in the theorem appealed to must appear in the syllogism’s other premise. Also,

if the syllogism is to prove something about a physical term, that term must appear

somewhere in the premises. But the only way for it to appear among the premises is

as a term related to the geometric middle term. Q.E.D.33 In the case at hand, Galileo

wants to prove something about the Earth using the premise that a sphere touches

a line at a point. For this he needs a premise relating the term “Earth” to “being

a sphere” or “touching a line at a point”; in actual fact, the premise he uses is “the

Earth is a sphere”.34

To claim that geometric objects do not exist in nature is at least prima facie to

challenge the descriptive applicability of geometry. As I interpret Galileo’s response

to Simplicio, the bulk of what follows the discussion of the mathematical proof that a

sphere touches a plane tangent to it at a point is an attempt to meet that challenge.

We saw in §§3.2 – 3.3 that Galileo offers two strategies for defending the descriptive

applicability of geometry against such a challenge. There is the inflationary strategy

of getting his opponent to grant that there is more to geometry and to the physical

33This argument is similar to Aristotle’s argument against kind-crossing at A 7 in the Posterior
Analytics. For Barnes’s translation and analysis of the argument, see (Aristotle, 1993, pp. 12-13,
130-132). For my own analysis and discussion, see Chapter 2.

34I believe it is an open question whether there is an adequate way of formalizing the notions
of deductive and descriptive applications of geometry in logical systems with greater expressive
means than Aristotelian syllogistic. It is furthermore an open question whether there are interesting
theorems relating the two. One difficulty is that in more expressive logical systems such as first-order
logic, it is easy to build arguments using premises whose subjects have nothing in common. From
the premise “0 6= 1” and the premise “snow is white”, we can conclude for example “0 6= 1 & snow
is white”.
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world than the opponent has so far recognized. There is also the idealizing strategy

which tries to identify conditions under which one may legitimately use geometry to

approximate some natural phenomena even when the phenomena do not correspond

precisely to the geometric approximation. A common theme of the two strategies is

that they involve coördinating our conceptions of geometry and physics.

Finally, in trying to meet the challenge to the descriptive applicability of geome-

try, Galileo encounters and transmits a pressure to admit more curves into scientific

consideration than would traditionally count as part of the subject matter of geom-

etry. This is a familiar theme from the 17th century and beyond. The cycloid is a

particularly well known example of a curve that was seen to be physically impor-

tant by the latter half of the 17th century but which some mathematicians following

Descartes did not regard as properly geometric.35 Over the course of the century,

as mathematical investigations of the cycloid became more sophisticated, there was

pressure to include the cycloid as a legitimate geometric object. Similarly, by pres-

suring us to admit more curves into scientific consideration than we might hitherto

have recognized, Galileo aids a process by which geometry is made more descriptively

applicable over time: geometry is made descriptively applicable to physics by means

of an expansion of geometry itself.36

35See (Bos, 2001, Ch. 29) and (Descartes, 2001, Bk. II).

36Similarly, in some cases geometry can be made applicable to the physical world by means of
a manipulation of the physical world, as when Galileo suggests a mechanical process by which we
could form a body into a sphere.
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Leibniz

In the preceding chapter, I examined Galileo’s response to the Scholastic Aris-

totelians on the issue of the applicability of geometry to the study of nature. Taken

as a group, Aristotle, Scholastic Aristotelians such as Benedict Pereira, and Galileo

form a natural object of study for historians of philosophy and science on account

of the great extent to which (chronologically) later members of the group engage

with the arguments of those who came before. Crucially for my purposes here, the

later members of the group respond to the earlier ones on the issue of the status of

geometry and its proper uses in empirical inquiry. A particularly important bit of

shared background is the theory of demonstrative knowledge developed in Aristotle’s

Posterior Analytics.

Despite the fact that Leibniz responds to Aristotle and Galileo in his philosophical

and scientific work, Leibniz does not engage as directly with some of the arguments

which occupied the earlier thinkers regarding geometry and its relationship to the

study of nature. In particular, the theory of demonstrative knowledge developed in

97
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the Posterior Analytics does not appear to play much of a role in Leibniz’s own

understanding of the applicability of geometry to physics, and so it will largely drop

out of my discussion in this chapter.1,2 Nonetheless, I believe it is natural to turn to

Leibniz at this point, for he deepens the worries about the applicability of geometry

which Galileo confronts while at the same time attempting to justify the legitimacy of

his own mathematical physics. It will be helpful to explain Leibniz’s views by setting

them in contrast to Galileo’s, so I would like to begin with a brief reminder about

the latter.

On the interpretation I offered in the preceding chapter, Galileo confronts the

challenge that geometry and physics are mismatched subjects in the sense that ge-

ometric objects—points, lines, curves, and solids—do not exist in nature. This is

understood to imply that no body has a shape corresponding strictly to any geo-

metric surface, no motion corresponds strictly to any geometric line, etc. Galileo

rejects this challenge as overstepping all available evidence and offers some reasons

for thinking that it is probably false. However, Galileo recognizes that in many cases,

the mathematical physicist will have to resort to approximations and take natural

1In this chapter I will cite the works of Leibniz using the following abbreviations: A = (Leibniz,
1923ff), cited by series, volume, and page number, so that A6.4.159 refers to series 6, volume 4, p.
159; AG = (Leibniz, 1989); C = (Leibniz, 1903); G = (Leibniz, 1875-1890), cited by volume number
and page, so that G7.563 refers to volume 7 p. 563; GM = (Leibniz, 1849-1863), cited by volume
and page number so that GM.4.91 refers to volume 4 p. 91; L = (Leibniz, 1969); RA = (Leibniz,
2001); Tentamen = (Leibniz, 1993). Whenever possible, I will give citations in A, the Akademie
edition. When this is not possible, I will give citations from Gerhardt (either G or GM), the formerly
standard edition of Leibniz’s works. When translations into English are also available, I will cite an
English translation as well.

2Leibniz does offer a breezy argument, in an early letter to Thomasius, that geometry is a true
science in the sense of the Posterior Analytics. The argument is that since geometers give their
proofs by way of constructions, and since constructions are motions, geometers give their proofs
from motions (“ex motu”) and therefore from causes (“ex causa”). See (G1.21-22). For further
discussion, albeit brief, see (Beeley, 1999, pp. 138-139). In any case, the issue does not seem to arise
in Leibniz’s later works.
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objects to correspond strictly to geometric ones even when they do not. These ap-

proximations are legitimate when the discrepancy between the real situation and the

geometric approximation can be assessed and shown not to affect the outcomes of the

demonstrations in which the geometric approximation is being employed.

Unlike Galileo, Leibniz accepts the view that nothing in nature corresponds strictly

to any geometric object. Writing in 1686, Leibniz claims that “no determinate shape

can be assigned to any body, nor is a precisely straight line, or circle or any other

assignable shape of any body, found in the nature of things” (RA, p. 315). Later,

in 1702, Leibniz reaffirms the view: “It is true that perfectly uniform change, such

as the mathematical idea of motion, is never found in nature any more than are

actual figures which possess in full rigour the properties which we learn in geometry”

(G4.568, L, p. 583).3 Despite his frequent changes of mind on other topics, Leibniz’s

rejection of what he calls “precise” or “definite” shapes in nature seems to be a stable

part of his view from the 1680’s until the end of his life.

On the other hand, Leibniz (like Galileo) is a mathematical physicist. Part of

Leibniz’s scientific practice involves representing and reasoning about bodies and

their motions as though they do have precise shapes. To pick a prominent example,

in “An Essay on the Causes of Celestial Motions”, Leibniz offers a demonstration that

the trajectories of the planets of our solar system, such as Mars, are elliptical. Leibniz

shows no concern in that text for his independent arguments that, strictly speaking,

the orbit of Mars could not be an ellipse. Those arguments are simply ignored.

The principal goal of this chapter is to explain Leibniz’s justification for hold-

3I have made a small change to Loemker’s translation, rendering “à la rigueur” as “in full rigour”
instead of “in full force”.
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ing that in certain ordinary mathematical and scientific contexts, one is justified in

representing and reasoning about nature as though it contains “precise shapes”—for

instance, as though it contains bodies and motions strictly corresponding to continu-

ous geometric curves and surfaces—despite his own arguments that there can be no

such “precise shapes” in nature. When Leibniz is confronted with this difficulty, the

justification he tends to offer is that even if nothing in nature corresponds exactly

to any geometric shape, there can be things in nature which approximate geometric

shapes to within any specified margin of error. For example, Leibniz writes in 1679

that “[E]ven if straight lines and circles do not and cannot possibly exist in nature,

it suffices nonetheless that there can exist figures which differ so little from straight

lines and circles that the error be less than any given” (A6.4.159).4 Part of my task

will be to explain how and to what extent this kind of justification solves the original

difficulty. I will argue that if he is correct, Leibniz shows that in spite of all his ar-

guments against precise shapes in nature, the phenomena of nature may still be just

as if there were precise shapes. On the other hand, I will argue that this justification

fails to provide an account of how to justify specific instances of scientific reasoning.

It does not tell us, for example, how one may rigorously reason about the orbit of

Mars while representing that orbit as an ellipse. To understand Leibniz’s position on

this latter issue, I will examine and to a certain extent reconstruct Leibniz’s account

of geometric approximations in physics.

Some interpreters of Leibniz, recently Timothy Crockett, contend that Leibniz’s

arguments against precise shapes in nature are at the same time arguments against

4This is my translation. I will give the fuller context of this statement along with the original
Latin text in §4.2.



Chapter 4: Leibniz 101

the reality of extended physical objects tout court (Crockett, 2005, 2009). Such

interpretations regard Leibniz’s rejection of precise shapes in nature as a key step on

the road to Leibniz’s mature idealism. The secondary goal of this chapter is to make a

case against idealist interpretations of Leibniz’s arguments concerning precise shapes

in nature. In particular, I will argue that it is a corollary of Leibniz’s solution to the

difficulty just considered that one can make sense of precise quantitative discrepancies

between geometric objects and the shapes of natural objects. Thus even if physical

objects do not have “precise shapes”, they do have some shapes—or if one prefers

one may speak here of some extensional properties—with which precise shapes can be

compared. Samuel Levey’s suggestion is that the shapes actual things have according

to Leibniz closely resemble what we would today recognize as fractal curves (Levey,

2003, 2005). I will provide evidence for thinking that Levey’s suggestion is compatible

with Leibniz’s view of the ways geometry and nature approximate one another.

The plan of the chapter is as follows. In §4.1 I will provide an account of why

on Leibniz’s view nothing in nature corresponds precisely to any geometric curve or

shape. Because other interpreters such as Crockett and Levey have devoted consid-

erable attention to explicating Leibniz’s arguments on this topic, I will focus mainly

on giving an account of what features of the physical world are incompatible with

“precise shapes” (rather than analyzing Leibniz’s arguments that the world has those

features). In §4.2 I will analyze Leibniz’s justification for treating natural objects as

though they have precise shapes, and in general for using mathematical techniques

in the empirical sciences, even when nothing in nature strictly corresponds to any

geometric object. I will pay considerable attention to the question of what Leibniz
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means by his claims that the difference between geometry and nature is “less than

any given”. Finally, in §4.3 I will use the preceding discussion to argue against those

idealist readings of Leibniz according to which Leibniz’s arguments against precise

shapes are ultimately arguments against the reality of shape and extension tout court.

4.1 A World Without Precise Shapes

Leibniz offers a number of different arguments against the existence of precise

shapes in nature; without individuating too finely, one may recognize at least four

lines of argument: (1) an argument from sense perception that any hypothesis about

an object’s shape would be ruled out by a better, more complex hypothesis if the

object were seen under more powerful magnification;5 (2) an argument that precise

shapes are ruled out by the actually infinite division of matter directly and without

consideration of time (the so-called “synchronic” argument);6 (3) an argument that

precise shapes are ruled out by the infinite division of matter together with facts

about how bodies and their motions are in perpetual flux over time (the so-called

“diachronic” argument);7 (4) an argument that perfect shapes in nature would amount

5Cf. Leibniz’s letter to the Electress Sophie of October 31, 1705 (G7.562-563). Leibniz’s letter to
Arnauld in October of 1687 is also suggestive of this line of argument. For the letter, see (G2.119);
for Robert Adams’s discussion of it, see (Adams, 1994, pp. 229-230).

6Leibniz sometimes writes as if the actually infinite division of matter directly implies that there
are no precise shapes in nature, as when he says to Arnauld: “. . . because of the actual subdivi-
sion of parts, there is no definite and precise shape in bodies” (G2.97-98, AG p. 80). There has
been considerable interpretive effort spent to understand the inference from infinite division to the
exclusion of perfect shapes in nature. For recent commentary, see (Levey, 2005, Forthcoming) and
(Crockett, 2005, 2009). Adams discusses this argument in (Adams, 1994, pp. 229-232) and employs
the distinction between the synchronic and diachronic arguments from infinite division.

7This argument occurs in a text entitled “There is no Perfect Shape in Bodies”; cf. (A6.4.1613-
1614, RA pp. 297-299). For an extensive discussion of the argument, see (Levey, Forthcoming).
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to barren or uncultivated parts of the universe and are therefore incompatible with

God’s wisdom.8 My focus will be to explain how the features of the world revealed

by the first two arguments rule out the existence of precise shapes in nature.9

The argument from sense perception is most clearly given in correspondence with

the Electress Sophie of Hanover. Leibniz writes that in order to understand the

exclusion of all “exact and indeterminate continuity” from matter—this presumably

includes any exact, continuous shape—one should consider what “experience confirms

by our senses”:

There is no drop of water so pure that one cannot recognize some variation
on examining it closely. A bit of stone is composed of certain grains
and through the microscope these grains appear as boulders in which
there are a thousand freaks of nature. If the force of our vision were
always increased it would always find somewhere further to go. There are
everywhere actual variations and never a perfect uniformity, nor are two
pieces of matter entirely similar to one another, in the large just as in the
small (G7.562-563).10

Leibniz’s argument invites us to take a closer look at the bodies around us and

their apparent shapes. With the naked eye, the book before me may look to be a

rectangular prism. That visual perception has the status of an initial representation

of its shape. If I look more closely, I can see irregularities in the cover, warping of the

8See the letter to the Electress Sophie already cited (G7.561-565).

9Why focus on these two arguments? The (synchronic) argument from infinite division merits
special attention because it directly concerns the relationship between geometric curves and the
physical world, and also because it appears to have played a central role in Leibniz’s thought about
the issue (see n. 6). The argument from sense perception is, as I will argue later in this chapter, a
much weaker argument against the existence of precise shapes in nature. But I focus on the argument
because it will help me to clarify the relationship between three things: the physical world; geometric
objects; the phenomena (i.e., how the physical world appears to beings like us).

10This text is taken from an unpublished translation by Donald Rutherford of Leibniz’s letter to
Sophie of October 31, 1705. I wish to thank Rutherford for permission to use his translation in this
dissertation.
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pages, and so on. As I take in this information, I frame a more complex representation

of its shape. But in principle, Leibniz argues, each representation of the book’s shape

would be shown inadequate under further magnification, so no representation that I or

any finite mind can produce will survive the magnification procedure. The argument

seems to show that any particular, finite representation of the shape of a body can

be refuted as inadequate. This leaves open the possibility that the object does have

some definite but infinitary shape which finite minds cannot frame to themselves; it

also seems compatible with a more thoroughgoing rejection of the physical reality of

bodies with shapes.

An odd feature of the argument from sense perception is that it ignores the limits

of the acuity of the senses. There are limits to what can be detected by sensory means

even allowing that the senses may be augmented by microscopes or other devices.11

Even if one grants that a perfectly spherical body could not exist in the natural

world, nonetheless there might be some bodies so nearly spherical that we could never

perceive the difference. This consideration shows that for Leibniz’s style of argument

to be effective, there must be some gross and readily apparent differences between the

shapes of actual bodies and continuous, geometric shapes. It also suggests that for

Leibniz to sustain the position that in principle there is some level of magnification

sufficient to show that any body is not, say, a sphere, Leibniz needs some argument

against perfect shapes in nature independent of facts about sense perception. The

argument from infinite division is just such an argument; let us turn to it now.

Leibniz presents an account of the fundamental physics of the world which he

11Moreover, Leibniz recognizes on many occasions that there are such limits; see the discussion in
§4.2.
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understands to preclude the existence of precise shapes in nature. He repeatedly

asserts that the absence of precise shapes in nature is due to the fact that bodies,

or the parts of matter which make up bodies, are actually infinitely divided.12 On

Leibniz’s view, the fact that there are no precise shapes in nature is a consequence of

fundamental physics. To understand Leibniz’s position it will be helpful to consider

first the account of the division of matter, then the way in which the division of

matter precludes precise shapes in nature.

The actually infinite division of matter comes about as a consequence of the way

bodies move through a plenum, i.e., through spaces which are entirely filled by other

bodies. For motion to occur in a plenum, bodies must move in closed circuits or loops.

When a body B moves forward, it pushes some bodies ahead of it, and these bodies

push still further bodies, until ultimately we loop back around to some bodies pushing

B. Of course, any bodies moving in a circuit are completely surrounded by still more

bodies. Therefore a good model for motion in a plenum would be a hose filled with

water which is circulating through the hose. In Book II Propositions 33 and 34 of his

Principles of Philosophy, Descartes had famously argued that if the hose or container

has different diameters along its length, the bodies moving through the container will

have to have speeds in inverse proportion to the diameters (Descartes, 1964-1976,

Vol. VIIIa, pp. 57-60). But in that case, if the diameter is always changing, the

speed at any two locations, no matter how close they are to each other, will have to

be slightly different. To accommodate the different diameters and fill the container,

the bodies will have to break up into ever smaller pieces. Descartes refrains from

12See for example Leibniz to Arnauld at G2.119, also “A Specimen of Discoveries” at (A6.4.1622,
RA, p. 315).
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describing this fracturing as actually infinite, preferring to describe it as “indefinite”

and incomprehensible to us (Descartes, 1964-1976, Vol. VIIIa, pp. 59-60). Leibniz

argues that the fracturing should be understood as actually infinite (A6.3.553-556,

RA, pp. 181-187). Thus Leibniz endorses the core of Descartes’ argument, though he

gives a slightly different interpretation of its results.

If there were such a thing as a perfect fluid, Leibniz argues that the the bodies in

the container would be broken all the way into points. If there were perfectly hard

bodies with diameters smaller than the dimensions of the container, they would resist

being broken. However, Leibniz does not believe perfect fluids or perfectly hard bodies

to be physically possible. Rather, all bodies lie on a scale between perfect hardness

and perfect fluidity. So we should think of the division of a physically continuous

body, such as the fluid in the container, as follows:

. . . [E]ven a body that is everywhere flexible, but not without a certain and
everywhere unequal resistance, still has cohering parts, although these are
opened up and folded together in various ways. Accordingly the division
of the continuum must not be considered to be like the division of sand
into grains, but like that of a sheet of paper or tunic into folds. And so
although there occur some folds smaller than others infinite in number,
a body is never thereby dissolved into points or minima. . . It is just as if
we suppose a tunic to be scored with folds multiplied to infinity in such a
way that there is no fold so small that it is not subdivided by a new fold:
and yet in this way no point in the tunic will be assignable without its
being moved in different directions by its neighbors, although it will not
be torn apart by them. . . although some folds are smaller than others to
infinity, bodies are always extended and points never become parts, but
always remain mere extrema. (A6.3.555, RA, pp. 186-187)

As the body moves around the container, it is actually infinitely divided into parts

determined by their own distinct motion or endeavor with respect to their neighbors.

Over any interval we choose, no matter how small, the fluid body is broken into
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smaller and smaller parts, each of which consists of more bodies, to infinity. Leibniz

insists that the bodies into which the whole fluid are broken are not points, and that

properly speaking points only exist as the boundaries (or “extrema”) of bodies. Thus

there are not points at every possible location even though every interval is densely

packed with points. We will return to the question of the structure of the parts in a

few paragraphs.

We now want to see how it follows from the fact that bodies are actually infinitely

divided that bodies do not have any precise or definite shape. This is a contentious

issue among Leibniz interpreters. Leibniz tends not to fill out the details of the

argument, and there are several different proposals for how to do so. In this section

I will follow the presentation given by Levey in his paper “Leibniz on Precise Shapes

and the Corporeal World” (Levey, 2005). In §4.3 I will consider another suggestion

made by Timothy Crockett.

Suppose for the sake of contradiction that there is a body whose surface is a precise,

geometrically definable curve. Such a surface must be continuous in the mathematical

sense. However, by the argument of the last few paragraphs, in any interval of the

supposed surface of the body, there will be infinitely many distinct parts marked off

as such by their slightly different motions in comparison with their neighbors. The

surface of the original larger body is in fact composed of the surfaces of the smaller

parts. The surfaces of these parts are contiguous—they touch each other with no

space in between—but not continuous. It follows that there are actually infinitely

many discontinuities over any interval we consider. Since all precise, geometrically

definable surfaces were assumed to be continuous, it follows that the body does not
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have a precise, geometrically definable surface over any interval. Of course, it would

be no use to move down a level and consider only the surface of a part of the original

body, since we can start with any part of the body and run the reductio once again.

Leibniz draws similar conclusions also about times and motions:

[I]t will be worthwhile to consider the harmony of matter, time and mo-
tion. Accordingly I am of the following opinion: there is no portion of
matter that is not actually divided up into further parts. . . Similarly there
is no part of time in which some change or motion does not happen to
any part or point of a body. And so no motion stays the same through
any space or time however small. . . (A6.3.565-566, RA, p. 209)

It follows that uniform motion or uniform acceleration are not to be found in nature,

either. Rather, over any stretch of time a body’s motion is subject to infinitely many

variations as it is being battered by the bodies surrounding it. The trajectories of

bodies through space, then, will not be precise geometric curves either. To return to

our example from the introduction, the orbit of Mars cannot precisely speaking be

an ellipse.

Even on Leibniz’s conception of them, physical bodies and their motions do have

what we can recognize as a mathematical structure, taking “mathematical structure”

in a fairly broad sense. Bodies have extrema—viz., surfaces and points—they have

parts, and the parts stand in part-whole relations of arbitrarily high complexity. How-

ever, it is important to see that the structure of bodies, motions, and other physically

“continuous” aspects of nature is not the same as the structure of geometric objects

such as curves or surfaces. A theoretician in Leibniz’s situation might have taken

his discoveries about bodies to reveal that all continuous quantities, even in math-

ematics, have the same structure, albeit a different structure than mathematicians
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had hitherto assumed. Leibniz does exactly the opposite, insisting that what it is

to be mathematically continuous and what it is to be physically continuous (better,

“contiguous”) are two very different things which should not be confused with one

another on pain of paradox. As Leibniz explains in the letter to the Electress Sophie

of Hanover I discussed earlier:

The fact is that matter, the evolution of things, and finally every genuine
composite, is a discrete quantity, but that space, time, mathematical mo-
tion, intension or the continual increase that is conceived in speed or other
qualities. . . is a continuous and undetermined quantity in itself, or one in-
different to the parts that can be taken from it and which are actually
taken in nature. The mass of bodies is actually divided in a determinate
manner and there is nothing exactly continuous in it; but space or the
perfect continuity which is in the idea marks only an undetermined possi-
bility of dividing it as one will. In matter and in actual realities the whole
is a result of the parts, but in ideas or possibles. . . the whole is prior to
the divisions (G7.562).13

Leibniz is in effect proposing new definitions for the terms “mathematically continu-

ous” and “physically continuous”. A mathematically continuous quantity is a whole

prior to any possible division of it into parts. All consistent ways of partitioning a

continuous quantity are equally possible; we may choose to divide it into parts in

whatever way we like. A physically continuous quantity is actually divided into parts

which are prior to the whole quantity and together constitute it. How the quantity

is divided into parts is determined by the physical facts, in particular by facts about

motion. Points or surfaces only exist in the physically continuous quantity when there

are parts which have those points or surfaces as boundaries. Moreover, the parts of

the physically continuous quantity have their own separate boundaries which merely

13This text is taken from an unpublished translation by Donald Rutherford of Leibniz’s letter to
Sophie of October 31, 1705.
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touch one another. This is the sense in which they are not really continuous, for if

they were really continuous, two parts which were next to each other would not have

separate boundaries. The following shows in a particularly clear way how the struc-

ture of the mathematically and physically continuous are different from each other:

In a physically continuous quantity such as a body, there can be distinct points p and

p′ whose distance from one another is zero. For instance, these points may lie on the

surfaces of two parts which are touching each other. In a mathematically continuous

quantity, if p and p′ are at zero distance from one another, then p = p′.14

In some contexts, and especially when issues in the foundations of geometry and

physics are concerned, Leibniz stresses the difference between the mathematically

continuous and the physically continuous. In other contexts, especially if his remarks

are aimed at practicing mathematicians or physicists, Leibniz plays down the impor-

tance of the distinction. The main reason the practicing physicist may ignore the

distinction is that on Leibniz’s view, physically continuous things or processes can

approximate mathematical continuity to any given margin of error. In the next sec-

tion I will consider how such approximations are possible and how they form a part

of Leibniz’s justification of geometric methods in physics.

14Beeley writes that from his early works through his later career, Leibniz “more or less consistently
employs a model at the core of nature so to speak which has its origins in an essentially mathematical
concept” (Beeley, 1999, p. 138). I believe Beeley’s statement is partly correct, but also partly
misleading. The physical world has a great deal of structure according to Leibniz, but it is important
to see that this structure is not the same as any geometric or mathematical structure. Nonetheless,
the fact that the physical world has such a rich structure will help to explain how the physical world
can be well approximated by geometric structures. This in turn will help explain the applicability
of geometry to physics. See §4.2.
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4.2 An Error Less than Any Given

Leibniz’s rejection of precise shapes in nature raises a worry about his justifica-

tion for applying geometry to physics. Such applications involve representing and

reasoning about bodies and their motions as though they correspond to geometric

curves or surfaces. But Leibniz argues on many occasions that such correspondences

never hold in full strictness. Leibniz therefore needs a justification for the applica-

bility of geometry to physics which is compatible with there never being any strict

correspondence between nature and the objects of geometry.

Leibniz is aware of this worry, and his response to it is multifaceted. In the

following discussion it will be helpful to distinguish between two explanatory goals

Leibniz might be aiming at in justifying the applicability of geometry to physics.

One goal would be to explain how geometric truths either can or do count as laws

of the phenomena of nature, or how nature appears to us, despite the fact that there

are no precise geometric shapes in nature. This would help to explain why we are

justified in holding it to be true of the phenomena of nature that the area of any

ellipse (say) is equal to the product of π, its semi-major axis a, and its semi-minor

axis b, and therefore why we are entitled to appeal to geometric truths in physics.

For purposes of abbreviation, I will call this the goal of explaining how geometric

truths govern the phenomena. A different goal would be to explain how we are jus-

tified in taking any particular phenomenon, for instance, the trajectory of Mars as it

appears to us, to be approximated by some geometric curve, or how we are justified

in reasoning about the trajectory of Mars by means of the approximation. I will

call this the goal of explaining the existence and legitimacy of geometric approxima-
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tions. I will turn to this latter explanatory goal only once the explanation of how

geometric truths govern the phenomena is in place.

4.2.1 How Geometric Truths Govern the Phenomena

It is clear enough from a number of texts that according to Leibniz, geometric

truths do govern the phenomena. In 1695 Leibniz writes that “Number and line are

not chimerical things. . . for they are relations that contain eternal truths, by which

the phenomena of nature are ruled” (G4.491-492, AG, pp. 146-147); and in a letter

to De Volder written on January 19, 1706, Leibniz claims:

The science of continua, i.e. of possibles, contains eternal truths that are
never violated by actual phenomena, since the difference [between real
and ideal] is always less than any assignable given difference (G2.282-283,
AG, pp. 185-186).15

In this respect mathematical truths are like metaphysical truths, both of which Leib-

niz refers to as “eternal laws” to which the appearances conform (G2.275, AG, p. 181).

Because on several occasions Leibniz insists that geometric truths govern the phenom-

ena only a few lines after arguing against the existence of precise shapes in nature,

there is a burden on Leibniz to explain how both of these could hold at once.

Leibniz confronts the worry about how geometric truths can be laws of the phe-

nomena of nature as well as the related but distinct worry about whether they are

laws of the phenomena. Regarding the former, it is clear that geometric truths could

not be laws of the phenomena if those phenomena were to “violate” geometry, a

possibility Leibniz considers in his reply to Bayle’s encyclopedia entry on Rorarius

15The remark in brackets was added by the translators. From the context, it is reasonably apparent
that Leibniz is talking about the difference between the real and the ideal.
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(cf. G4.568, L, p. 583). I am unaware of any text, including the reply to Bayle, in

which Leibniz spells out what it would be for the phenomena to violate geometry.

But I assume that, like Galileo, Leibniz is considering the objection that geometric

theorems are false when they are understood as claims about natural phenomena.

Recalling the example from Scholastic Aristotelians such as Pereira, the phenomena

would violate geometry if material spheres do not touch material planes tangent to

them at a point, etc.16 Leibniz at least suggests that this is the relevant objection

when he writes in the same reply to Bayle that “It is true that perfectly uniform

change, such as the mathematical idea of motion, is never found in nature any more

than are actual figures which possess in full rigour the properties which we learn in

geometry” (G4.568, L, p. 583). Leibniz’s way of speaking is suggestive of figures

in nature which do not possess the properties geometry proves such figures to have;

sometimes we do speak loosely about “spheres” in nature which clearly do not pos-

sess the properties of spheres proved in geometry. I believe that ultimately, however,

Leibniz’s remark is most charitably interpreted as claiming that geometric figures do

not exist in nature at all.

Leibniz’s response to the worry that the phenomena might violate geometric truths

is to insist that conformity with geometric truths is a criterion of reality in phenomena.

In the same reply to Bayle, Leibniz writes:

Yet the actual phenomena of nature are arranged, and must be, in such a
way that nothing ever happens which violates the law of continuity. . . or
any of the other most exact rules of mathematics. . . Actual things can-
not escape [mathematics’] rules. In fact, we can say that the reality of
phenomena, which distinguishes them from dreams, consists in this fact
(G4.568-569, L, p. 583).

16For further discussion of this objection to the applicability of geometry, see Chapters 1 and 3.
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Also, in the letter to De Volder discussed above, the fuller context is as follows:

The science of continua, i.e. of possibles, contains eternal truths that are
never violated by actual phenomena, since the difference [between real
and ideal] is always less than any assignable given difference. And we
don’t have, nor should we hope for, any mark of reality in phenomena,
but the fact that they agree with one another and with eternal truths
(G2.282-283, AG, pp. 185-186).

These considerations foreclose any possibility that natural phenomena should violate

or contain counterexamples to geometric truths. Any course of experience we might

have which appeared to violate geometric truths should be rejected as unreal, as

analogous to a dream, precisely because it does not cohere with geometric truth.

Moreover, coherence with the eternal truths of mathematics and metaphysics is what

makes an experience an experience of something real, as opposed to a dream or a

hallucination.

The next element in Leibniz’s explanation of how mathematical truths can govern

the phenomena is an insistence that it is at least possible for there to be natural objects

which approximate geometric objects arbitrarily closely. That Leibniz believes such

approximations are possible comes out clearly in a text entitled “De Organo sive de

Arte Magna Cogitandi”, where Leibniz writes the following:

For even if straight lines and circles do not and cannot possibly exist in
nature, it suffices nonetheless that there can exist figures which differ so
little from straight lines and circles that the error be less than any given.
That is sufficient for the certainty of demonstration as well as practice.
That figures of this kind can exist, however, is easily demonstrated, if only
this one thing is admitted, namely that some lines are given.17

17This is my translation of the passage. Here is the original: “Nam etiamsi non darentur in natura
nec dari possent rectae ac circuli, sufficiet tamen dari posse figuras, quae a rectis et circularibus tam
parum absint, ut error sit minor quolibet dato. Quod satis est ad certitudinem demonstrationis
pariter et usus. Posse autem dari hujusmodi figuras non difficulter demonstratur, modo admittatur
hoc unum, aliquas dari lineas” (A6.4.159).
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I interpret the syntax of Leibniz’s claim to be the following: For any margin of

error ε and any circle C, it is possible that there is a natural object N such that

the difference between C and N is less than ε. A similar claim holds at least for

lines. However, the context of the quotation is the question of how one can construct

the various geometric curves given some particular curves, such as circles and lines,

as primitives. If one can use natural approximations to circles and lines in place

of true circles and lines to construct the remaining curves, I presume one can also

obtain arbitrarily good natural approximations of those remaining curves (by means

of compass and straightedge constructions). In that case, we would have it that

in general, for any margin of error ε and any geometric curve Γ constructible with

compass and straightedge, it is possible that there is a natural object N such that

the difference between N and Γ is less than ε.18 Leibniz is not explicit about what

is meant by the difference or error in this claim. I assume he means there is some

way of superimposing the natural object onto the curve so that the distance from the

curve to the natural object is always less than ε. This is how I will understand the

difference or error between two curves in the remainder of this chapter.19

18Geometry in Leibniz’s time (and well before it) investigated curves which are not constructible
using a compass and straightedge. I know of no reason why Leibniz would not countenance the
physical possibility of arbitrarily good natural approximations of the then known nonconstructible
curves as well as the constructible ones—at least in the case of continuous curves such as the cycloid.
Inasmuch as doing so helps Leibniz secure the applicability of the theories of nonconstructible curves,
it would seem to strengthen his position to admit the physical possibility of natural approximations
of nonconstructible curves. But this issue is not addressed in the quotation discussed here, and I
am unaware of any text in which Leibniz explicitly addresses the issue.

19It should be noted that the process of comparing a geometric curve to a natural object is not
trivial in the Leibnizian context where geometric objects and the physical world are structurally
dissimilar. It appears to be a consequence of Leibniz’s view that the geometric and the physical
do not even have the same topological properties: as I discussed in the preceding section, Leib-
niz countenances the existence of distinct physical points lying at zero distance from one another.
Nonetheless, it is clear that Leibniz takes such comparisons to be possible and takes there to be
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If the difference between a geometric curve and the shape of a physical object

is small enough, a human observer will never be able to distinguish the one from

the other. That there are such limitations on human observers is something Leibniz

emphasizes at various points in his career. For example, in an early work entitled

“The Theory of Abstract Motion”, Leibniz writes:

[S]ensation cannot discriminate whether some body is a continuous or
contiguous unit, or a heap of many discontiguous ones separated by gaps;
whether parts are wholly at rest, or redound on themselves by an insensible
motion; whether an angle of intersection is very slightly oblique, or exactly
a right angle; whether the angle of contact is made at a point, or a line
or surface. . . (A6.2.273, RA, p. 343).20

In this text, Leibniz stresses that if from the physical theory he is proposing “no

sensible error disturbs our reasons”, then it “suffices for the phenomena” (ibid.).

Leibniz makes similar remarks in defending the technique of approximating curves

by large collections of polygons as one does in integral calculus. For when doing

calculus one also argues that the difference between two quantities, namely the given

curve and some corresponding approximation of it by polygons, can be made less

than any given quantity. In such cases any error between the original curve and the

approximation can be rendered completely “insensible”.21

quantitatively precise facts about the extent of the difference between a geometric and a physical
object. I suspect that such comparisons require one first to identify all physical points at zero dis-
tance from one another, so that the space in which the objects are compared is geometric space. See
the discussion of continuity later in this section.

20When Leibniz speaks of the “angle of contact” here, he is presumably speaking of the contact
between a sphere and a plane tangent to it. The issue of the contact between a sphere and a plane
(or line) has arisen repeatedly in this work; cf. the discussion of Galileo’s extrusion argument in
§3.1.

21See for example (A2.1.53), cited by Beeley (1999, p. 140). Beeley’s article contains numerous
references to passages in which Leibniz argues that very small differences are either insensible or
make no difference to the phenomena.
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In summary, Leibniz’s solution to the problem of how geometric truths can be laws

of the phenomena of nature is as follows. Even though there are no precise shapes in

nature, it is possible for things in nature to differ so little from precise shapes that

this difference is beyond the limits of the acuity of human sensation. As far as the

phenomena are concerned, things can therefore appear to have perfect shapes. If the

difference between the shape of the natural object and the perfect geometric shape is

sufficiently small, no sensible error can arise from conflating the two.

A consequence of the considerations in the last few paragraphs is that one must

reassess Leibniz’s argument from sense perception against precise shapes in nature.22

At best that argument shows that in many ordinary cases, we can convince ourselves

that bodies do not have the simple geometric shapes we might at first perceive them

to have. This might make it plausible to us (and it might have made it plausible to

the Electress Sophie) that no body has any precise geometric shape. But ultimately,

sense perception is entirely unable to distinguish whether natural objects have precise

geometric shapes. While this limits the effectiveness of the argument from sense

perception, I believe it makes Leibniz’s position as a whole a stronger one. For one

might have worried that Leibniz’s other arguments against precise shapes, such as the

argument from infinite division, prejudge various empirical questions in objectionable

ways. At first glance, it would seem to follow from Leibniz’s arguments that if we

pursue astronomical observations far enough, we shall discover that the orbit of Mars

is not really an ellipse. But this is not the case: the argument against precise shapes

reveals nothing about how astronomical observations of Mars will turn out.

22Cf. §4.1.
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So much for Leibniz’s explanation of how geometric truths can govern the phe-

nomena in the absence of precise shapes in nature. It does not follow from the fact

that they can govern the phenomena that they do in fact govern them. Or in other

words, it does not follow from the fact that there can be natural objects which ap-

proximate geometric objects to within any given margin of error that there are in fact

such natural objects.23 If no natural objects do suitably approximate the geometric

ones, then the truths of geometry would at best amount to empty or vacuous laws.

Leibniz seems to reject this possibility by insisting that eternal truths such as those

of geometry do govern the phenomena, and that the difference between real and ideal

is less than any given (as in the 1706 letter to De Volder cited above). However, he

is far less explicit about which geometric objects are approximated by natural ones,

and I am not aware of any place Leibniz takes this question on in a systematic way.

The one case Leibniz singles out for separate discussion is that of mathematical

continuity itself. Leibniz writes in his reply to Varignon that “[O]ne can say in general

that though continuity is something ideal and there is never anything in nature with

perfectly uniform parts, the real, in turn, never ceases to be governed by the ideal

and the abstract” (GM4.93, L, p. 544). There is both in this text and other texts the

suggestion that the laws of the ideal, or of the mathematically continuous, hold also

for the real, though I do not discern any explicit argument about which laws hold

for both and which do not.24 Earlier I gave as an example a law over which the two

kinds of continua differ, namely the law that if the distance from point p to point p′

23In other words still, we want to know for which geometric curves Γ we have the following claim:
For any margin of error ε and any geometric curve Γ, there exists some natural object N such that
the difference between N and Γ is less than ε.

24See also (G4.568-569, L, p. 583).
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is 0, then p = p′. Leibniz is aware of this discrepancy between the mathematically

and the physically continuous, though it is not entirely clear what his response to the

discrepancy is.25

A reasonably straightforward argument can be made, however, which I think does

give some content to the idea that mathematical continuity and physical continuity

differ from each other by less than any given amount. First, recall earlier that Leibniz

said sense perception cannot distinguish “whether some body is a continuous or a

contiguous unit” (A6.2.273, RA, p. 343). This provides reason to think that on

Leibniz’s view, sense perception cannot distinguish whether there is only one point

at a single location, or perhaps two or more. So one may identify contiguous points

with each other without causing any error a human being can sense.26 Now, for the

time being taking physically contiguous points to be one and the same point, the

second task is to see how physical continuity approximates mathematical continuity.

The task is made difficult by the fact that Leibniz’s usual definitions of mathematical

and physical continuity are complicated, especially so because they involve notions

of possibility and determinacy. But on at least on occasion, Leibniz is willing to use

a simpler criterion of mathematical continuity, as when he writes to Des Bosses that

“when points are situated in such a way that there are no two points between which

25Cf. (A6.3.563-564, RA, p. 205).

26There is one difficulty with this suggestion. Leibniz does at least once give a sensible criterion
for whether bodies are continuous or merely contiguous, namely whether there is sensible cohesion
between them. For example, given a spherical body on a flat body, one may tell whether these are
continuous or merely contiguous as according to whether one can push the spherical body around
without resistance. See (A6.3.537, RA, p. 149). This contradicts Leibniz’s earlier claim that sense
perception cannot discern the difference between continuity and contiguity. I am unsure whether
this is genuinely a change of mind or an inconsistency. I am inclined to think the strongest position
for Leibniz is to insist that sense perception cannot distinguish contiguous points and therefore to
abandon any sensible criterion for distinguishing continuity from contiguity.
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there is no midpoint, then, by that very fact, we have a continuous extension” (G2.515,

AG, pp. 201-202). Now in the case of physically continuous quantities, points only

exist as boundaries of bodies (or motions), so a midpoint between two points will only

exist in the case that there happens to be a body (or motion) containing a boundary

at that location. There might in fact not be any such body (or motion), and therefore

no such midpoint. Nonetheless, given any small interval ±ε around any location, we

are guaranteed that there are points inside the interval since “there is no portion of

matter that is not actually divided up into further parts” (A6.3.565, RA, p. 209).27

Therefore even if the physically continuous quantity does not always contain the

midpoint for any pair of points in it, the physically continuous quantity does contain

points within ε of the midpoints. I believe this is a reasonably straightforward sense

in which the difference between physical and mathematical continuity is less than any

given. Choosing ε to be far finer than the level of acuity of human sensation, we can

show that as far as the appearances are concerned, the physically continuous quantity

is indiscernible from the mathematically continuous.

While Leibniz stresses that mathematical and physical continuity differ by less

than any given amount, he does not explicitly tell us which geometric objects are

arbitrarily well approximated by natural objects. The claim Leibniz makes in the 1706

letter to De Volder suggests that such approximations are common. Recall Leibniz’s

statement: “The science of continua. . . contains eternal truths that are never violated

by phenomena, since the difference [between real and ideal] is less than any assignable

difference”. “The science of continua” refers to geometry, and the difference between

27Or, one might also say, since the parts are divided into further parts ad infinitum.
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real and ideal presumably includes the difference between continuous mathematical

objects and actual physical ones. Leibniz’s statement therefore encourages a liberal

view on the extent to which nature approximates geometry. In a similar spirit, Leibniz

makes the remark about nature that “the more one knows her, the more geometric one

finds her” (G3.54, L pp. 352-353). Strictly speaking, however, none of this provides

us with an argument or a precise description of which geometric curves or surfaces

have arbitrarily good approximations in the physical world. This may not be a bad

consequence, however; Leibniz can leave the matter open to observation and scientific

investigation.28

4.2.2 The Existence and Legitimacy of Geometric Approxi-

mations

For now I will take it that Leibniz has explained how geometric truths both can and

do govern the phenomena. The core of this explanation consisted of an argument that

nature can approximate geometry arbitrarily well and that, in the very important case

of mathematical continuity, it actually does so. I want to turn now to the question

of the existence and legitimacy of geometric approximations. This is the converse

of the preceding issue: we first want to know, given any natural object, are there

arbitrarily good geometric approximations of it?29 And second, assuming there are

28The exception here is continuity: it is a priori in roughly our sense of the word that physical
processes are continuous. See Leibniz’s response to Malebranche for the sense of continuity in
question at (G3.51-55, L, pp. 351-354). Earlier I gave some of the texts which explain why the
continuity of physical processes is a priori : anything in conflict with it would be rejected as unreal.

29Spelled out more fully, the syntax of the question is: Given any margin of error ε and any natural
object N , is there some geometric object Γ such that the difference between N and Γ is less than ε?
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some good geometric approximations for natural objects, how are we justified in using

those approximations to reason about the natural objects?

The issue of the existence of arbitrarily good geometric approximations to natu-

ral objects corresponds more closely to what philosophers and historians of science

usually mean by the “mathematizability” of nature. For one does not mathematize

nature by choosing a geometric curve and an error margin and then hunting around

for natural objects differing by less than the error margin. Rather, one starts with

some natural objects or systems (and perhaps some margin of error determined by the

context) and hunts for sufficiently good geometric approximations of those objects or

systems. The first question from the last paragraph asks whether, in principle, this

hunt can ever be in vain because for small enough margins of error the geometric ap-

proximations give out. The second question asks after the kind of justification we can

offer, once we have chosen some suitable geometric approximation, for the soundness

of our reasoning based on the approximation.

Because the notion of approximation we are using is symmetric, some of the

arguments given in §4.2.1 are relevant to the first question. Just as mathematical

continuity is arbitrarily well approximated by physical continuity, physical continuity

is arbitrarily well approximated by mathematical continuity. Leibniz’s comments in

the 1706 letter to De Volder and his claim that the more one examines nature, the

more geometric one finds her also support some general optimism about the existence

of arbitrarily good geometric approximations. However, this again falls short of any

precise characterization of which natural systems are arbitrarily well approximated by

geometric ones. This appears to leave the question of how well geometry approximates
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nature at least partly to observation and scientific investigation, and partly to the

breadth of one’s conception of geometry.

To get some further purchase on his view of the existence and legitimacy of ge-

ometric approximations in particular instances, I will examine a case from Leibniz’s

own scientific practice. In “An Essay on the Causes of Celestial Motions”, published

in the Acta Eruditorum in 1689, Leibniz presents an argument which is meant to

explain why the planets in our solar system move in ellipses with the sun at one

focus. Leibniz’s chief assumption is the existence of a fluid vortex circulating around

the sun; the key property of the vortex is that it circulates harmonically, which is to

say that “the velocities of circulation round the centre decrease proportionally as the

distances from the centre increase” (GM6.149-150, Tentamen, pp. 129-130). Leibniz

gives a demonstration of the elliptical trajectories of the planets from the assumption

of the fluid vortex.30 The demonstration is offered as an explanation, assuming the

vortex theory, of why the planets move as they do: they are being pushed by the fluid

around them.

The principal explanandum is the fact that the planets move in elliptical orbits

around the sun such that equal areas are swept out in equal times by a radius drawn

from the sun to the planet. Leibniz writes that this fact is a law which Kepler had

discovered on the basis of Tycho’s “more accurate than usual” observations (GM6.147,

Tentamen, pp. 127-128). Later in the text, Leibniz again cites observations as the

basis for the claim that radii drawn from the sun to the planet sweep out equal

30The assumption of the harmonically circulating vortex is not the only assumption in Leibniz’s
argument. In particular, Leibniz must make some assumptions about the planets’ motions towards
and away from the sun (which he calls the “paracentric motion”). See (GM6.152, Tentamen, p. 132).
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areas in equal times, which is the ultimate ground for claiming that the fluid vortex

circulates harmonically (GM6.151, Tentamen, p. 131). Now as I understand them,

Leibniz’s arguments against precise shapes in nature imply that precisely elliptical

trajectories and harmonic circulation are physically impossible. But these arguments

are completely ignored in the “Essay”. The “Essay” is written as if these conditions

on the motions of the planets and the surrounding vortex held exactly.31

I take Leibniz’s arguments against precise shapes in nature to be decisive here,

and therefore it follows that the trajectory, for example, of Mars, is not precisely

elliptical. Any attribution of a geometric shape to a body’s trajectory must be an

approximation. This raises two important questions about Leibniz’s view of the situ-

ation: (A) Is the true trajectory of Mars arbitrarily well approximated by geometric

curves? Or, more precisely, for any margin of error ε does there exist some geomet-

ric curve Γ such that the difference between Mars’s trajectory and Γ is less than ε?

(B) Is the true trajectory of Mars arbitrarily well approximated by some particular

ellipse? More precisely, for any margin of error ε is the difference between the given

ellipse and Mars’s trajectory less than ε?

With regard to (A), I believe it is difficult to determine Leibniz’s view. I do not

know of any explicit statement by Leibniz which would tell us just how close geometric

approximations can come to true orbital trajectories. He seems to offer the ellipse as

supported by all observations, and that may mean he holds that the approximation

suffices as far as the appearances or phenomena are concerned. In this case, the

31Leibniz even writes that Descartes may have been hindered in his own astronomical investigations
either because “he could not reconcile [Kepler’s laws] sufficiently with his own opinions, or because
he remained ignorant of the fruitfulness of the discovery and did not consider it to be so accurately
followed by nature” (GM6.148, Tentamen, p. 128).
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margin of error would be smaller than our ability to detect the approximation by

sense perception. Such a small margin of error presumably suffices for all scientific

purposes. However, the existence of one very good approximation does not guarantee

the existence of approximations for all ε, however small.

There is more relevant evidence with regard to (B). For if the difference between a

particular trajectory and a particular geometric curve is less than ε for all ε, and if the

trajectory is nonetheless not identical with the curve, then the difference between the

trajectory and the curve is infinitesimal. This makes Leibniz’s views on infinitesimal

quantities relevant to deciding whether a particular real shape or real motion can be

arbitrarily well approximated by a particular geometric object. Unfortunately, there

is no scholarly consensus on what Leibniz’s view on infinitesimals is, and it is beyond

the scope of this chapter to make any detailed contribution to that debate. Instead

I will describe two ways of proceeding, one which interprets Leibniz as accepting

infinitesimal quantities and one which interprets Leibniz as rejecting them. I will

conclude with some reasons for preferring the latter interpretation. My hope is that

connecting the issues of infinitesimal quantities and geometric approximations will

ultimately provide resources for fixing on an interpretation of Leibniz which settles

both issues.

The first interpretive strategy takes Leibniz as granting that the difference between

the trajectory of Mars and some particular given ellipse is less than ε for all ε. It

nonetheless maintains that the trajectory and the ellipse are not identical. It is clear

that at least during certain parts of his career, and especially in his early years,

Leibniz is willing to entertain the possibility of non-identical magnitudes differing
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by less than any amount. For example, in comparing the circle to an infinitangular

polygon Leibniz writes the following:

But that being so, you will say, an infinitangular polygon will not be equal
to a circle: I reply, it is not of an equal magnitude, even if it be of an
equal extension: for the difference is smaller than can be expressed by any
number (A6.2.267, RA, p. 342).

Leibniz could use the same distinction regarding the ellipse which approximates

Mars’s trajectory, namely that it is not the same in magnitude as Mars’s trajec-

tory even though it has an equal extension. This in turn would justify the use of

some mathematical techniques in reasoning about Mars’s trajectory; importantly, it

would justify using Leibniz’s new technique for finding areas of ellipses as also giving

the area swept out by Mars along its trajectory. Even if Leibniz does not draw a

distinction between magnitude and extension, I take the principal virtue of admitting

that the given ellipse and Mars’s trajectory differ by less than any amount is that it

justifies reasoning about Mars’s trajectory as if it were an ellipse without fear of pro-

ducing errors.32 In terms of the main explanatory goals mentioned in the beginning of

this section, it gives Leibniz the basis for explaining the legitimacy of (at least some)

geometric approximations. Moreover, on the interpretation we are now considering

the existence and legitimacy of geometric approximations is explained by the general

claim that the real and the ideal differ by less than any given quantity.

32It is unclear exactly which mathematical results transfer from one magnitude to another which
differs from it, though by less than any amount. It would seem as if areas and volumes would
be one case in which the results do transfer, so that if an ellipse has area equal to πab, then so
does a trajectory differing from the ellipse by less than any quantity. But certain other properties
might not transfer. In any case, the position attributed to Leibniz on this interpretive strategy is
made stronger inasmuch as there is some wide range of properties shared by quantities differing only
infinitesimally, because this justifies conflating the quantities quite generally.



Chapter 4: Leibniz 127

The second interpretive strategy begins with Leibniz’s later rejection of infinitesi-

mal quantities as fictions and his corresponding willingness to infer from the fact that

two objects differ by less than any quantity that the two objects are identical.33 With

these assumptions it follows that if the trajectory of Mars differed from some given

ellipse by less than ε for all ε, then the trajectory of Mars would simply be that el-

lipse. Since this result directly contradicts Leibniz’s arguments against precise shapes

in nature as well as his rejection of infinitesimal quantities, this interpretive strategy

must hold that Mars’s trajectory and the ellipse differ by some positive, finite quan-

tity.34 But this removes the justification we considered in the last few paragraphs for

reasoning about the trajectory of Mars using the ellipse as an approximation. If the

trajectory of Mars and the ellipse differ by some finite amount, it becomes difficult

to say which if any of the properties of the one hold also of the other. Also, on this

interpretation the existence and legitimacy of geometric approximations is clearly not

to be explained by the claim that the real and the ideal differ by less than any given

quantity.

The interpretive strategy just described needs a different explanation for the le-

gitimacy of geometric approximations. I believe the best such explanation is given by

Leibniz in the letter to the Electress Sophie of October 31, 1705. Leibniz is discussing

the difference between the complex real motions and shapes of bodies, on the one

hand, and the simpler geometric shapes those bodies and motions appear to us to

33For an article which collects together textual evidence that Leibniz is willing to draw the inference
just described, see (Levey, 2008).

34On the interpretation I am offering, this means that every way of superimposing the approxi-
mating ellipse onto Mars’s trajectory leaves some positive, finite distances between the ellipse and
the trajectory.
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have, on the other. I take this to be analogous to the difference between Mars’s true

but very complicated motion and the Keplerian ellipse. Leibniz writes the following:

Eternal truths founded on limited mathematical ideas do not fail to serve
us in practice, insofar as it is permissible to abstract from inequalities
too small to be able to cause significant errors in relation to the aim
proposed; just as an engineer who traces a regular polygon on a plot of
land is unconcerned if one side is longer than the other by some inches.35

On the account Leibniz is here proposing, whether it is legitimate to use a given

geometric curve as an approximation to a real motion or real body depends on the

aims of the scientific context and what counts as a significant error in that context.

There is no foundational or context independent theory of which properties the ap-

proximating curves and real shapes share. Rather, the context determines how close

the approximating curve and real shape need to be and what errors may be caused if

the discrepancy is too large.

One consideration against the first interpretation, and in favor of the second, is

that the first interpretation requires a commitment to infinitesimal quantities that

appears to be very difficult if not impossible to paraphrase away. On Leibniz’s ma-

ture view of infinitesimals as fictions, it is important that arguments which appeal to

infinitesimals can be transformed into arguments for the same conclusions that do not

appeal to infinitesimals. This makes the legitimacy of infinitesimalist mathematics,

and Leibniz’s calculus in particular, independent of whether one accepts infinitesimal

35The translation is my own, though I have been helped by the unpublished translation of the
same text by Donald Rutherford. The original text is as follows: “Cependant les verités eternelles
fondées sur les idées mathematiques bornées ne laissent pas de nous servir dans la practique, autant
qu’il est permis de faire abstraction des inegalités trop petites pour pouvoir causer des erreurs
considerables par rapport au but qu’on se propose; comme un ingenieur qui trace sur le terrain un
polygone regulier, ne se met pas en peine si un costé est plus long que l’autre de quelques pouces”
(G7.563-564).
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quantities as real entities. But the justification for geometric approximations envi-

sioned in the first interpretation does not seem to admit of paraphrase solely in terms

of finite quantities. This is in effect because two quite particular finite quantities, e.g.,

a particular ellipse and Mars’s trajectory, are being claimed to differ by less than ε

for all ε. This is to be contrasted with cases such as infinite series, where a claim that

an infinite series has a sum r can be cast as the claim that for any ε, the difference

between partial sums and r is less than ε so long as we take enough terms in the

series. Here talk of the infinite series really amounts to talk of partial sums.36 Talk

of Mars’s trajectory or a particular ellipse, on the other hand, seems to be talk about

particular finite quantities.37

Further support for the second interpretation can be derived from Leibniz’s own

discussion of infinitesimals in the “Essay”. In what later became known as the

“Lemma on Incomparables”, Leibniz remarks:

In the demonstrations I have employed incomparably small quantities,
such as the difference between two finite quantities, incomparable to the
quantities themselves. Such matters, if I am not mistaken, can be exposed
most lucidly as follows. Thus if someone does not want to employ infinitely
small quantities, one can take them to be as small as one judges sufficient
as to be incomparable, so that they produce an error of no importance
and even smaller than allowed. In the same way as the Earth is like a

36Leibniz takes this view of infinite series in “Infinite Numbers”, a text written in 1676: “Whenever
it is said that a certain infinite series of numbers has a sum, I am of the opinion that all that is being
said is that any finite series with the same rule has a sum, and that the error always diminishes as
the series increases, so that it becomes as small as we would like” (A6.3.503, RA, p. 99).

37The example of Mars’s trajectory and the ellipse may be infelicitous. At times Leibniz does
consider rejecting circles as fictional limit entities and paraphrasing talk of circles as talk about
sequences of polygons with a great enough number of sides to make the error as small as one
wishes. Perhaps he could take the same line to paraphrase away talk of ellipses as well as talk
of infinitesimal differences between ellipses and other figures. See Leibniz’s discussion in “Infinite
Numbers” at (A6.3.498, RA, p. 89). In any case, one could avoid using an ellipse for purposes of
the example and consider instead a case in which a shape was being approximated by a polygon
(perhaps like the engineer trying to trace a polygon on the plot of land).
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point, or the diameter of the Earth as an infinitely small line with respect
to the sky, so it can be demonstrated that if the sides of an angle have
a basis incomparably smaller than them, the angle they enclose will be
incomparably smaller than the right angle, and the difference between the
sides will be incomparable with the sides themselves. . . ” (GM6.150-151,
Tentamen, pp. 130-131)

The “Lemma on Incomparables” gives the scientist or mathematician who rejects

infinitesimal quantities a different way of understanding arguments that are, when

taken at face value, about infinitesimals. The claim that Mars’s trajectory and some

given ellipse differ by less than any given quantity can be understood as the claim

that Mars’s trajectory and the ellipse do differ by some finite quantity, only one

which is small enough as not to produce significant errors. On this way of construing

the argument, the soundness of the argument is uncontroversial. But this way of

reconstruing talk of infinitesimal quantities, when applied to the first interpretation

outlined above, in effect yields the second interpretation I am now arguing for. Thus

another reason to prefer the second interpretation is that it gives Leibniz a position

which is by Leibniz’s own lights both sound and uncontroversial.

4.2.3 Summary

In this section I have given an account of Leibniz’s explanations of two distinct

but related issues concerning the applicability of geometry to physics. I first gave

an account of Leibniz’s explanation of how geometric truths can and do govern the

phenomena of nature even when nothing in nature corresponds precisely to any ge-

ometric object. This explanation crucially relies on the claim that natural objects

can approximate geometric ones to within any margin of error, and in particular that
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physical continuity does in fact approximate geometrical continuity arbitrarily well.

This makes it plausible that in particular cases, real shapes may differ so little from

geometric curves that the difference is insensible, so that the shape of a body is a

geometric curve as far as the appearances of nature are concerned. I then argued that

Leibniz’s best explanation of the existence and legitimacy of geometric approxima-

tions is to point out that in many cases, natural objects are well enough approximated

by geometric curves for the purposes of doing science. All that science requires is for

the error between the real shape and the approximating geometric curve to be small

enough so as not to cause errors significant in light of the aim at hand. To return to

the example I discussed at some length, Leibniz’s soundest justification for approxi-

mating the trajectory of Mars with a particular ellipse would be to say that the error

between the trajectory and the ellipse is small enough so as not to cause significant

errors given the aims of astronomy. This justification stands in contrast with another

possible justification which I argued provides us with a poorer interpretation of Leib-

niz: namely, that the error between the trajectory and the ellipse is less than any

given quantity.

4.3 Phenomenal and Worldly Aspects of Shape

Timothy Crockett has recently developed an interpretation of Leibniz according to

which the arguments against precise shapes in nature ultimately support the view that

“the world, as it is in itself, does not contain genuinely extended things” (Crockett,

2009, p. 736). This means, in the first instance, that the world as it is in itself does not

contain extended bodies with metaphysically determinate boundaries. But on Crock-
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ett’s interpretation, the arguments against precise shapes also ultimately provide

evidence against the reality of extended matter as well (Crockett, 2009, pp. 750-751).

Crockett’s interpretation is therefore in line with earlier interpretations of Leibniz

which see the arguments against precise shapes in nature as providing Leibniz with

support for idealism and an idealist analysis of body (cf. Adams, 1994, esp. Ch. 9).

In the present section, I will argue that Leibniz’s explanation of how geometric truths

can be laws of the phenomena of nature poses a difficult challenge for Crockett’s pro-

posal about how to understand the arguments against precise shapes. In particular,

Leibniz’s explanation presupposes that there is a fact of the matter concerning the

error or discrepancy between a mathematical curve and the shape of a body no matter

how small the margin of error. It similarly presupposes a fact of the matter, no mat-

ter how small the error margin, about the discrepancy between physical as opposed

to mathematical continuity. I will argue that the existence of determinate discrepan-

cies of the kinds just described requires that bodies have determinate boundaries and

that matter be extended. My arguments will therefore provide support for the view

Crockett dubs “surface realism” and attributes to Levey (cf. Levey, 2005).

Let us return to the argument against precise shapes discussed in §4.1 which begins

with the premise that matter is actually infinitely divided. As I presented it (following

Levey, 2005), the argument also assumes for purposes of reductio the existence of a

body whose surface is a precise, geometrically definable curve. I believe all the parties

to the current debate on Leibniz on shape, including Crockett, Levey and myself,

agree that so far as Leibniz’s account of the phenomena is concerned, it does often

seem to human observers that the bodies around them have shapes which are definite
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and geometrically definable—at the least from a distance and without the benefit of

microscopes.38 However, Crockett argues that the appearance of bodies with definite

boundaries is ultimately shown to be “wholly phenomenal”, i.e., that determinate

surfaces “only exist in perception or imagination” (Crockett, 2009, p. 750). Because

he finds difficulties for Leibniz in the very idea of a body with a metaphysically

determinate surface, Crockett does not analyze the argument against precise shapes as

taking metaphysically determinate surfaces for granted (even for reductio).39 Rather,

on Crockett’s interpretation the main assumptions of Leibniz’s argument are the

infinite division of matter together with a particular account, grounded in Leibniz’s

texts, of the individuation of bodies. Briefly summarized, the argument goes as

follows: If extended matter is infinitely divided, then everything in the universe is a

fluid.40 Some parts of the fluid evidently have more cohesiveness than others, although

as I discussed above, no part of the universe is perfectly hard or perfectly fluid, either

(see §4.1). What makes something one body rather than many is the cohesiveness of

its parts, where this is understood to mean their common motion or endeavor relative

to other parts of the universe (Crockett, 2009, p. 752-754). However, cohesiveness or

common motion is a matter of degree. If we consider any given surface as a candidate

for the boundary for a body, we will find fluids outside the surface moving together

38In the case of Crockett, see (Crockett, 2009, p. 756) for the textual evidence. It is also worth
pointing out that Leibniz himself does not hesitate to describe ordinary cases in which an observer
sees something as circular or as having some other geometric shape. See, for example, the letter
to Foucher at (G1.370, L, p. 152), and the 1705 letter to the Electress Sophie at (G7.563). I will
discuss the latter text in more detail in a few paragraphs.

39I assume that in talking of metaphysically determinate surfaces, Crockett is talking about sur-
faces, the existence and character of which is mind-independent.

40Since Leibniz is a plenist mechanist, it is also the case (on his view) that the entire universe is
filled with fluid.
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with parts in the interior; we will also find fluids inside the surface that do not have a

motion in common with other parts in the interior. But then the surface fails to pick

out a unique body, and since the candidate boundary was suitably arbitrary it follows

in general that no surface could pick out a body. As Crockett puts it, “there is no

fact about the world in virtue of which determinate boundaries among bodies exist”

(Crockett, 2009, p. 755). Hence the apparent boundaries between bodies familiar

from our everyday experience must exist only in our perception, not in the world. As

a corollary to the main argument, it follows that there cannot be extended matter,

either. This is because for extended matter to exist, matter must in some way be

divided into parts which bear spatial relations to each other (Crockett, 2009, p. 736

n. 6). But the main argument has shown that the division of matter into parts

cannot be made sense of, in effect because the boundaries of these parts cannot be

made sense of. Hence Leibniz’s entire argument can be taken to as a refutation of

the claim that extended matter exists (Crockett, 2009, p. 759).

I wish to argue against Crockett’s reconstruction of Leibniz’s argument on the

grounds that it renders the conclusions of the argument inconsistent with Leibniz’s

explanation of how the truths of geometry can be laws of the phenomena of nature.

I do not dispute that the premises of the argument, as Crockett presents them, are

claims Leibniz would have endorsed at some time in his career. Nonetheless, I do

not believe Crockett’s reconstruction of the argument represents Leibniz’s own settled

view of what the argument accomplishes. This is chiefly because when one looks at the

texts from the later parts of Leibniz’s career in which Leibniz announces the absence

of precise shapes in nature as a well established conclusion, nearby one often finds
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the explanation of how geometric truths can nonetheless be laws of the phenomena

of nature—as if Leibniz is trying to forestall a misunderstanding.41 Hence I take

it to be important to interpret Leibniz’s thesis that there are no precise shapes in

nature compatibly with his explanation of how geometric truths can be laws of the

phenomena of nature.

To see the inconsistency between Crockett’s proposal and Leibniz’s explanation

of how geometric truths can be laws of the phenomena of nature, note first that if

Crockett is correct, it follows not just that no body in nature actually has a de-

terminate boundary, but also that it is physically impossible for a body to have a

determinate boundary.42 As against this, Leibniz’s explanation relies on the possibil-

ity of the existence of figures in nature which differ so little from geometric curves that

the difference between the figure in nature and the geometric curve is less than any

given quantity.43 But for those bodies which Leibniz is now claiming to be physically

possible, there must be determinate discrepancies between their shapes and geomet-

ric curves, no matter how small the margin of error between the two is allowed to

be. Such discrepancies in turn presuppose that the bodies in question have determi-

nate boundaries. For instance, suppose the boundaries of a body were allowed to be

41Here I have especially in mind the 1702 reply to Bayle, the 1702 letter to Varignon, and the
1705 letter to the Electress Sophie. These appear at (G4.554-571, L, pp. 574-585), (GM4.91-95, L,
pp. 542-544), and (G7.558-565), respectively.

42I believe both Crockett and I can grant that on Leibniz’s view it is metaphysically possible for
there to be bodies with determinate boundaries, since God might have created atoms which are
perfectly hard, and these atoms would have had determinate boundaries. See the letter to Arnauld
at (G2.119). For God to do so would contradict God’s wisdom, however (cf. GM3.565, AG, p. 171).
Nonetheless, given facts about motion in the actual world, and given Crockett’s preferred account
of what makes something one body, Crockett’s argument, if successful, shows that bodies with
determinate boundaries are physically impossible.

43See the text of “De Organo” (A6.4.159) and the discussion in §4.2.
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vague, leaving a collection of equally good candidate boundaries which never depart

from each other by more than a nanometer. Then there will be no facts about the

discrepancy between the shape of such a body and geometric shapes that hold with

the margin of error of a picometer (a thousandth of a nanometer). Therefore it is

physically possible for bodies to have non-vague, determinate boundaries or surfaces,

even if they cannot have surfaces which correspond precisely to any geometric curve.

Recall also Leibniz’s explanation of how geometric truths manage to be non-

vacuous with respect to the phenomena of nature. If my interpretation is correct, the

non-vacuity of geometric truths requires that there actually be shapes in nature such

that the difference between those shapes and some corresponding geometric curves is

smaller than the acuity of our sense perception would allow us to detect. It would

therefore follow from the non-vacuity of geometric truths that bodies have boundaries

determinate enough that the difference of those bodies and some corresponding geo-

metric curves is less than a margin of error determined by the acuity of our sensation.

This, too, is incompatible with there being no fact of the matter about the boundaries

of any body, though it is perhaps compatible with some degree of vagueness.

It appears to follow from the argument two paragraphs ago that extended matter is

at least possible, since the bodies Leibniz is asserting to be possible are surely extended

and presumably also made of matter. From the fact that Leibniz also seems to

countenance natural bodies with shapes that are phenomenally indistinguishable from

geometric shapes, or even natural bodies that closely approximate geometric shapes,

it would seem to follow that extended matter is actual. Nonetheless, I think one

gets a stronger argument for the actual existence of extended matter by considering
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Leibniz’s statements comparing physical and mathematical continuity directly rather

than by focussing on his statements about shape. The passages in the letters to

De Volder and Varignon discussed in §4.2.1 indicated that physical continuity, while

being importantly and strictly different from mathematical continuity, is nonetheless

approximated by mathematical continuity to within any margin of error. This is

part of what makes it legitimate to reason about matter as though it were spatially

continuous in the mathematical sense even though it is only continuous in the physical

sense. But being spatially mathematically continuous is paradigmatically what it is

to be an extended thing, so that if something can be approximated to within any

margin of error by spatial mathematical continuity, that thing is surely extended.

Crockett is skeptical that there could be extended matter for Leibniz largely be-

cause he doubts that sense can be made of divisions or boundaries in matter. Crockett

assumes that for Leibniz, what it is for matter to be extended is for it to consist of

parts that are spatially related to each other. If one cannot make sense of boundaries

between parts, one cannot make sense of the parts themselves or relations between

parts, either. But if the account I proposed in §4.2.1 of the way physical continuity

approximates mathematical continuity is correct, then Leibniz believes that for any

location in a body and any margin of error ε, there is a division or boundary which is

closer to the location than ε. So not only are there some facts about where divisions

in matter exist, there are facts that hold to within any margin of error, no matter

how small.

At a higher level of generality, the argument I am making amounts to the following:

Leibniz’s explanation of the applicability of geometry to physics requires that physical
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objects approximate geometric objects to within very small margins of error. It also

requires physical objects to have a continuity which is arbitrarily well approximated

by mathematical continuity. Such approximations require various facts of the matter,

to quite high precision, about the boundaries of bodies and as well as their physical

continuity. Indeed, such approximations require that bodies have boundaries that are

either not at all vague or the vagueness of which only comes into play for very small

margins of error; they surely also require that bodies be spatially extended entities.

Since these approximations are compatible with Leibniz’s thesis that there are no

precise shapes in nature, the latter thesis should not be taken to imply that there are

no such facts.

In light of the argument so far, I believe it should be granted that for Leibniz,

extended matter and extended bodies with determinate boundaries are physically

real. If that is correct, then the argument against precise shapes in nature induces

a distinction between two classes of surfaces, the “ideal”, “mathematical” surfaces

which form the subject matter of geometry, and the “real”, “physical” surfaces that

correspond to the boundaries of bodies. Leibniz’s argument attempts to show that

the two classes of surfaces contain no surface in common. It does not attempt to show

that extended bodies aren’t physically real. Even granting this much, I believe there is

prima facie a promising interpretive strategy left open to one who wishes to interpret

Leibniz as an idealist. Such an interpreter may argue that being physically real is

compatible with being wholly phenomenal and mind-dependent. Thus even though

there is an important distinction between mathematical and physical surfaces from

the point of view of the foundations of physics, from the point of view of philosophy
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the physical surfaces are every bit as phenomenal as the mathematical ones. In the

remainder of this section, I wish to argue against this way of interpreting Leibniz as

an idealist. Briefly put, my argument is that according to Leibniz, so far are physical

surfaces from being wholly phenomenal that they are in fact not a part of human

experience at all. This lends support to the view that the reality of the shapes of

bodies is mind-independent and hence real not just in a physical sense, but real tout

court.

Consider the following passage from Leibniz’s 1705 letter to the Electress Sophie:

There are. . . divisions and actual variations in the masses of existing bod-
ies, to whatever limits one should go. It is our imperfection and the defect
of our senses that makes us conceive physical things as mathematical be-
ings, in which there is some undetermined thing. And one can demonstrate
that there is no line or figure in nature which gives exactly and keeps uni-
formly through the least space and time the properties of a straight line
or circle or something else whose definition can be comprehended by a
finite mind. . . [N]ature cannot, and the divine wisdom does not wish to,
trace exactly these figures of limited essence which presuppose something
determined and consequently imperfect in the works of God. However,
they are found in the phenomena, or in the objects of our limited minds:
our senses do not recognize and our understanding conceals an infinity of
little inequalities which nevertheless do not prevent the perfect regularity
of the work of God, although a finite creature could not comprehend it
(G7.563).44

Leibniz here draws the distinction between mathematical and physical surfaces along

the lines just described. Mathematical surfaces are simpler, having “limited essences”

and definitions finite minds such as ours can comprehend. When bodies and their

motions appear to us, their shapes appear to us as mathematical surfaces and their

trajectories appear as mathematical curves. But the appearances are misleading:

44This is an unpublished translation by Donald Rutherford.
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nothing in nature or in the works of God corresponds precisely to mathematical curves

and surfaces. The boundaries and trajectories of bodies are infinitely complex, they

are beyond our comprehension, and they are not part of our sensory experience of the

world. So described, it is hard to see how these boundaries could be “phenomenal”

or the contributions of our sensory faculties. Rather, the physical boundaries exist

in nature and are part of what God does, though they are hidden from us by the

workings of our minds.

Here is another way of taking Leibniz’s argument: Leibniz is claiming that when

physical bodies and their motions are in our perceptual ken, we perceive those bodies

and their motions to correspond to mathematical curves and surfaces from which

their shapes and trajectories are perceptually indistinguishable. So long as there are

mathematical curves and surfaces perceptually indistinguishable from the physical

boundaries and motions, we will always perceive the former and not the latter. We

do not see the physical curves and surfaces for what they truly are because they

are different from the corresponding mathematical objects, yet we do not see them

as different. For example, Leibniz can agree to the truisms that the orbit of Mars

appears to us, and that we sense its motion. Yet we sense that motion as tracing out

an ellipse, which we know independently not to be full truth of the matter. The true,

infinitely complex motion is not as such a part of our experience of Mars’s orbit.45

45Another text by Leibniz which supports the interpretation I am offering appears in “Infinite
Numbers” of 1676 (A6.3.498-499, RA, pp. 89-91). The interpretation of “Infinite Numbers” is
somewhat more difficult, however, owing to the fact that Leibniz goes back and forth over the
question whether we have sensory consciousness of the complexities of physical shapes or not. I
believe that even as a matter of interpreting “Infinite Numbers”, the view can be sustained that
for Leibniz, the infinitely complex physical shapes are not part of human experience. See Levey’s
discussion of this passage at (Levey, 2005, pp. 78-83).
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The overall thrust of this section has been to argue against idealist readings of

Leibniz’s argument against precise shapes in nature on the grounds that such readings

are not faithful to the ways in which physical surfaces are approximated by mathemat-

ical ones. One might worry, however, that the surface realist is no better off; and the

surface realist would be no better off if he could give no account of physical surfaces

which are distinct from yet arbitrarily well approximated by traditional mathematical

surfaces. In previous work, Levey has argued that Leibniz’s conception of physical

surfaces in many respects anticipates the modern notion of a fractal; Levey has offered

the Koch curve as a particularly apt model for the kind of surfaces Leibniz takes real

bodies to have (Levey, 2003, esp. §6). In a technical appendix to this work, I offer

a proof that Levey’s suggestion is compatible with the facts about approximation I

have been stressing. In particular, it can be shown that for all ε, there is a continuous

and everywhere differentiable curve which approximates the Koch curve to within ε.46

This provides further evidence in favor of surface realist interpretations of Leibniz.

4.4 Conclusion

In this chapter, I have offered an account of Leibniz’s defense of the methods of

mathematical physics in light of his rejection of anything in nature which corresponds

precisely to a mathematical curve or surface. If I am correct, the account explains why

Leibniz would take himself to be justified in treating bodies and their motions as if

they correspond precisely to mathematical surfaces and curves, which is just what he

does in “An Essay on the Causes of Celestial Motions”. I argued that to understand

46See Appendix A.
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Leibniz’s defense, we must distinguish between two explananda: the lawlike character

of geometric truths with respect to the phenomena of nature, and our justification

in using geometric objects as approximations to physical ones in particular cases

of scientific reasoning. I also argued that Leibniz’s explanations, while related to

each other, are importantly different. The common element in the two explanations

concerns the great extent to which the physical and the mathematical approximate

one another. A consequence is that Leibniz’s argument against precise shapes in

nature should not be taken to be incompatible with either the physical existence or

the ultimate reality of extended bodies with determinate boundaries.



Chapter 5

Geometry and Nature

In the two preceding chapters I provided an analysis of Galileo’s and Leibniz’s

defenses of the use of geometry in studying nature. Both thinkers confronted the

challenge that geometry fails to correspond to anything in nature, and in particular

the challenge that nothing in nature has a precise geometric shape. Neither thinker

took the challenge to geometry to be insurmountable; a common theme is that the

actual shapes of bodies and their motions may be approximated by geometric objects

provided certain conditions are met. Galileo’s and Leibniz’s acceptance of methods of

approximation in the sciences, which we contemporary thinkers undoubtedly share,

suggests that it is consistent to regard the use of geometry in empirical inquiry as

a success while also holding that nothing in nature corresponds precisely to any

geometric object or structure. Indeed, from the point of view of contemporary science,

physical space is non-Euclidean, yet the 17th century practice of using Euclidean

geometry to study nature was a tremendous success. Looking back on 17th century

scientific practice, it is natural to view the earlier scientists as successfully applying

143
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geometry to various empirical matters even though nothing in nature corresponded

precisely to what 17th century scientists could recognize as a geometric object. We can

partly explain this success by pointing out that in the relevant contexts, Euclidean

space provides a reasonably good approximation to the structure of physical space.

If it is compatible with the applicability of geometry or a given geometric struc-

ture that nothing in nature correspond precisely to that geometric structure, one may

wonder whether the applicability of a given geometry puts any constraints whatso-

ever on the relationship between nature and the structure described by the geometry.

In this final chapter, I will argue that the applicability of a given geometry to na-

ture does impose a non-trivial constraint on the relationship between nature and the

corresponding geometric structure: in particular, when one represents some natural

objects or processes by a geometric structure, there must be determinate discrepan-

cies between features of the natural objects or processes and the geometric structure.1

If we suppose we can find a pair consisting of a geometry and an aspect of nature such

that there are no determinate discrepancies between the elements of the two, then

there is a specific sense (to be articulated later in this chapter) in which one cannot

justify the application of the geometry to that aspect of nature. This gives the sense

in which determinate discrepancies between the geometry and nature “must” exist.

The thought that the applicability of a geometry does impose constraints on the

geometry-nature relationship arises naturally from the discussion of approximations

in the preceding chapters. Galileo gives a particularly vivid description of how the

geometric natural philosopher is like the merchant who, in order to calculate how

1To use the language introduced in Chapter 1, I will offer an argument that the applicability of
geometry is incompatible with truth of the No-Discrepancies Challenge.



Chapter 5: Geometry and Nature 145

much sugar is on the scale, must subtract the weight of the packaging.2 The nat-

ural philosopher’s aim, by comparison, is to demonstrate that some effect holds of

real physical things and not just some fanciful abstractions. In order to do this, he

must take some account of the discrepancy between the geometric representation of

natural things and their real properties. For instance, he must take account of the

difference between the precise geometric shape attributed to something in the con-

text of a physical demonstration and its real (perhaps horribly complex) shape. This

presupposes that there is a fact of the matter about how the geometric shape and the

object’s real shape do or do not differ. Otherwise the natural philosopher’s method

of approximation cannot even get started. Returning to Galileo’s analogy, it is as if

the merchant needs to calculate how much sugar he has, yet there is no fact of the

matter about how much of the weight on his scale is due to the packaging.

To put my aim in this chapter in slightly different terms: In this dissertation

as a whole, I have been investigating a family of challenges to the applicability of

geometry, each of which attempts to articulate some way in which geometry fails to

fit or to correspond to nature. An insuperable challenge in the family would be one

which articulates a sense in which the failure of correspondence between geometry and

nature is so severe that the applicability of geometry can no longer be accounted for.

I will argue in this chapter that there is such an insuperable challenge: namely, the

challenge that there are no determinate discrepancies between geometric structures

and aspects of nature. Part of my concern in the previous interpretive chapters has

been to argue that the historical figures I discuss deny the soundness of the challenge.

2See especially §3.3.
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I now wish to provide my own arguments against its soundness.

I will proceed by giving a critical examination of a view which William Tait at-

tributes to Plato and which Tait appears to endorse himself. The view Tait develops

attempts to account for the role of geometry in everyday life and in the exact sciences

while denying that geometric representations of natural phenomena are approxima-

tions of them. They are not approximations precisely because there are no determi-

nate discrepancies between properties of natural phenomena and geometric objects

or structures. Rather, the relationship between some natural item and a geometric

object is the relationship between an individual and the Platonic Form it participates

in. My strategy will be to expose difficulties with Tait’s conception of the relationship

between geometry and nature which would generalize to other views which attempt

to deny the existence of determinate discrepancies between geometric structures and

aspects of nature.

The structure of the chapter is as follows. In §5.1, I will give an outline of Tait’s

positive account of the relationship between natural phenomena and geometric ob-

jects. In §5.2, I will develop several arguments against the adequacy of Tait’s account

as a description of the relationship between geometry and nature in scientific practice.

Finally, in §5.3 I will assess the import of a key motivation for Tait’s account, namely

the thought that bodies do not have determinate boundaries.

5.1 Forms and Individuals

Tait develops a conception of the relationship between natural phenomena and

geometric structures in two articles aimed primarily at interpreting Plato’s under-
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standing of the exact sciences (Tait, 1986, 2002). On Tait’s reading, Plato is giving a

description of exact science which present-day thinkers “can agree with” (Tait, 2002,

p. 178). I take this to mean that the conception of exact science Tait attributes to

Plato is one that Tait endorses at least in its chief aspects. Since my present aim is

to examine the view Tait describes on its own merits, I will simply refer to the view

as Tait’s and set aside any question of faithfulness to Plato.

Tait seems to grant that, at some stage in our individual or cultural history, we

might conceive of geometry as a theory of the shapes or other broadly quantitative

properties had by bodies or other natural phenomena (Tait, 1986, p. 170). As we

become more sophisticated in our understanding of geometry and natural phenom-

ena, however, we learn that “the marks on a chalkboard and the surveyor’s line of

sight are not really geometric objects” (loc. cit.). Not only is a cardboard box not

“perfectly” a right rectangular prism, it is not even the sort of thing which has edges

or vertices in the precise geometric sense (Tait, 2002, p. 182). Despite the fact that

the marks on a chalkboard are never perfectly, e.g., a right triangle, part of what

it is to learn geometry is to learn to see some chalk marks as right triangles in the

appropriate circumstances. The typical circumstance Tait seems to have in mind is

one where there are some marks on a chalkboard which are at least roughly triangu-

lar in an ordinary sense and where the instructor tells us that the triangle is a right

triangle. This provides us with a partial explanation of the relationship between an

individual and the Form it participates in: it is that relationship which holds be-

tween a collection of marks on the chalkboard and a geometric right triangle in the

situations just described. It is important to note that on the basis of this explana-
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tion, the Form Right Triangle does not pick out any precise extension and therefore

should not be thought of as a universal (Tait, 2002, p. 184). The many marks on

the chalkboard which participate in the Form right triangle may have very different

shapes in an ordinary sense, and there is no clear cutoff beyond which some marks

are too deformed to count as a right triangle.

Tait presents a similar account of the relationship between geometric structures

and natural phenomena found outside of the lecture hall. No aspect of natural phe-

nomena strictly corresponds to any geometric object or structure: “[W]e should not

think of the phenomena as providing a well-defined model of the language of geometry

in which the theorems fail to hold. Rather, they simply fail to provide a well-defined

model” (Tait, 1986, p. 167). Thus the trajectory of a planet could not “literally”

or “absolutely” be an ellipse. Nonetheless, in mathematical astronomy it may be

reasonable to idealize the phenomena in such a way as to treat the trajectories of

the planets as ellipses. It is the phenomenon of an orbital motion as idealized which

is (or at least might be) an ellipse in a literal or absolute sense. The actual motion

can be an ellipse at most “roughly”. A significant difference between the setting of

the lecture hall and the setting of natural science is that in the case of the latter,

the sensible objects do not come to us with verbal descriptions telling us that they

are, say, ellipses rather than ovals. Tait does not offer his own theory of how a scien-

tist knows which geometric idealization is the appropriate one—in Plato’s language,

which Forms the individuals participate in. In effect, this issue appears to be left as

a matter of the competence of the scientist.3

3Tait does give what he takes to be Plato’s account: “[T]he phenomena are created in the image
of the Forms, and these are implanted in the soul so that experience recalls them to us as the
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Tait does provide some considerations which argue for, or which at least explain,

his contention that no natural phenomena correspond strictly to any geometric object

or structure. The crux of these considerations is that the notion of distance, which is

fundamental to (at least Euclidean) geometry, is not a well defined notion when taken

over the phenomena. In my view, the considerations Tait raises about distance are

best analyzed as two separate lines of argument. The first takes “phenomena” in the

old sense of “appearance” and argues that the notion of distance is not well defined

given the limits of human perception. It therefore concerns bodies and other aspects

of nature as they are sensed. The important limit on human perception is that a

human observer could never tell by sense perception that two lengths are incommen-

surable with each other (Tait, 2002, p. 181). This implies that the geometric concept

of distance outstrips anything we could establish by perceptual experience, so that

nothing in perceptual experience corresponds precisely to the geometric notion (Tait,

1986, p. 159). A related perceptual fact which seems relevant here, though Tait does

not mention it, is that a human observer can be shown three line segments, l1, l2, and

l3, such that by perceptual standards |l1| = |l2|, and |l2| = |l3|, yet |l1| 6= |l3|.4 This

drives home the thought which Tait does emphasize, namely that the phenomena do

not correspond precisely to the geometric notion of equality of length.

The second line of argument ignores the limits of human sense perception and

attempts to show that bodies themselves do not have well defined lengths or bound-

right form of structure in terms of which to understand our sense experience. Why these forms of
structure? Because they are ‘best’ ” (Tait, 1986, p. 157). I do not assume that Tait means to
endorse Plato on this point.

4This follows from the fact that there are thresholds beneath which human observers cannot
discern differences in length. See (Krantz, Luce, Suppes, & Tversky, 1971, pp. 26-28).
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aries. Tait insists that when we regard a body as having a well defined length or

boundary, we are already idealizing it, in effect taking it to occupy some particular

region of space at an instant. But “[i]n the physical theories in which we employ this

idealization, there is nothing that corresponds precisely to the notion of a sensible

object. For example, the log [mentioned earlier] will correspond to a region of high

mass/energy, but there is no way to pick out precise boundaries for this region” (Tait,

1986, p. 160). One might think that if our physical theories countenance such entities

as spatial or spatiotemporal regions, then the relationship between the natural world

and the geometry which gives the abstract structural description of physical space-

time would be precise correspondence of the sort Tait wishes to deny. Tait would

presumably have to view the representation of the natural world in terms of a geo-

metric spacetime as yet another idealization. This is a thorny issue to which we will

return in §5.3.

To keep Tait’s two lines of argument straight, I will use terms such as “natural

phenomena” and “sensible object” when the issue concerns the world as it is sensorily

perceived. I will use terms such as “nature” and “body” when the issue concerns the

world independent of considerations of human sensory faculties. With the exception

of the passage cited in the last paragraph, Tait appears to be concerned in the first

instance with the relationship between geometry and sensible objects. However, Tait

appears to take the relationship of geometry to sensible objects as being analogous to

its relationship to nature. I am less convinced that the relationship between geometry

and the phenomena is a good guide to the relationship between geometry and nature;

I will strive to keep the two relationships separate in my discussion.
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From Tait’s contention that natural phenomena do not provide any well defined

model of the language of geometry it follows fairly straightforwardly that on Tait’s

view, there is no isomorphism between the structure of Euclidean space and the

phenomena. This is because an isomorphism would provide the means to define the

language of geometry in terms of natural phenomena. Moreover, I presume Tait’s

view does not uniquely apply to Euclidean geometry but would generalize to a broad

variety of geometries with suitably precise notions of distance and angle measure.

Put briefly, Tait’s view implies that the world lacks geometric structure even giving

“geometric” a fairly broad reading, i.e., as picking out a fairly wide class of geometric

structures. Now even if the world did not have a structure which strictly corresponds

to any of the geometric structures just alluded to, it might nonetheless have a structure

which suitably approximates one of them. It is important to see that Tait also rejects

this suggestion. In a discussion of the way in which the Pythagorean theorem applies

to the phenomena, Tait writes the following:

The surveyor does indeed apply the Pythagorean theorem and gets good
results. But the results, expressed in terms of empirical measurements
and constructions, are only “rough.” And one should not take “rough”
here to mean “approximate.” For example, the circle can be approximated
to any degree of accuracy by an inscribed regular polygon. But here the
difference between the two figures is itself a precise magnitude, an area.
But the sense in which the sensible figure S [where S is some particular
sensible triangle – D.M.] is roughly right triangular or in which the result
of the empirical construction roughly corresponds to [the Pythagorean
theorem] is different from this. It is not a case of one geometric object (in
our sense) differing from another by some precise amount: one of the terms
of the correspondence is such that the geometric ideas do not perfectly
apply to it. (Tait, 2002, pp. 183-184)

This passage provides the strongest textual evidence that on Tait’s view, geometric

representations of natural phenomena are not approximations. This is because an
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approximation requires a determinate discrepancy between two objects, and determi-

nate discrepancies are missing when one considers a pair consisting of a geometric and

a sensible object. The relation “x approximates y” can hold only between geometric

or otherwise suitably idealized objects. In describing his view, Tait sometimes refers

to Whitehead’s claim that nature as perceived has ragged edges.5 He also describes

the exemplifications in the phenomena of mathematical concepts such as magnitude

and quantity as “blurred” (Tait, 1986, p. 161). Both of the latter informal descrip-

tions of his view seem aimed at capturing the idea that determinate discrepancies

between geometric and sensible objects do not exist.

Although Tait often emphasizes the lack of correspondence between geometry

and natural phenomena, his aim is not to deny the applicability of geometry to the

phenomena. Rather, his aim (following Plato) is to clear the ground of simple-minded

accounts of the applicability of geometry and prepare the way for a more sophisticated

account. In the next section I will give a critical analysis of Tait’s more sophisticated

account.

5.2 Applicability and its Presuppositions

A mathematical theory such as geometry can be applied in a natural scientific

theory in a variety of ways. Here I will be concerned primarily with the applicability

of geometry in a deductive sense: a geometric theory is applied deductively in a given

scientific theory when the scientific theory takes geometric theorems as assumptions

5For an example of Tait’s references to Whitehead, see (Tait, 1986, p. 181). For the original
passage in Whitehead, see (Whitehead, 1920, p. 50).
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in deductive arguments. So, for example, Euclidean geometry is applied deductively

in the theory developed in Euclid’s Optics because the latter contains arguments

which appeal to geometric theorems in order to derive conclusions about visual rays

and perspective (cf. Euclid, 1972). Deductive applications of mathematics, and in

particular of geometry, are pervasive in the sciences. An adequate account of the

applicability of geometry should not be at odds with the legitimacy of its deductive

applications. The main charge I wish to make against views which deny the existence

of determinate discrepancies between aspects of nature and geometric structures is

that they are at odds with the legitimacy of geometry’s deductive applications.

I will proceed by examining Tait’s analysis of deductive arguments in the exact sci-

ences which appeal to geometric theorems. I will ultimately argue that the difficulties

with Tait’s analysis can be suitably generalized to cover similar views.

In the discussion of the surveyor I cited in the preceding section, Tait considers

the following argument concerning a sensible right triangle S:

(T1) S is right triangular.

(T2) The squares on the sides of a right triangle are equal to the square on the

hypotenuse.

∴ (T3) The squares on the sides of S equal the square on the hypothenuse.6

Tait provides an analysis of this argument in terms of the theory of Forms. Using

6See (Tait, 2002, p. 183). Tait is primarily concerned with the way in which (T1) and (T2)
amount to an explanation of (T3) rather than a deductive argument for it. However, he clearly
recognizes that (T1) - (T3) is a deductive argument (Tait, 2002, p. 184). I should also note that
while I am examining the same argument as Tait, I am altering Tait’s labeling and order.
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“S” as a name, letters like “f” and “g” for predicates, and Greek letters such as “Φ”

to denote forms, Tait analyzes (T1) - (T3) schematically as:

(T1f ) S is f (i.e., S participates in Φ)

(T2f ) Φ is g

∴ (T3f ) S is g.7

That is, the first premise of the argument relates S to a Form, Φ, Right Triangle. In

§5.1 I reviewed some of Tait’s explanatory remarks about what that relation amounts

to. The second premise is a proposition about the Form Right Triangle, namely the

Pythagorean theorem. On Tait’s analysis the propositions of geometry are just claims

about Forms (Tait, 2002, p. 185). Finally, though Tait does not say just which Form

is involved in the conclusion, the conclusion surely relates S again to a Form.

The difficulty is that there is no interpretation of this argument open to Tait on

which the argument is sound. If we read (T1) - (T3) in the straightforward way, so

that the premise according to which S is right triangular is interpreted in the literal

or absolute sense, then the argument is valid. The difficulty is that S, being a sensible

object, is not literally or absolutely a right triangle. S is at best “roughly” a right

triangle. So on this first reading, the argument fails to be sound because its first

premise is not true. Suppose, then, that we insist on reading (T1) as (T1f ), assuming

along with Tait that S is at best a rough exemplification of the Form Right Triangle.

In that case, the difficulty is that (T2)—which on both Tait’s analysis (T2f ) and

7(Tait, 2002, p. 183)
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by my own lights is the Pythagorean theorem—does not concern itself with objects

which are only roughly right triangular. It tells us what is the case with objects

which are exactly right triangular. Hence on Tait’s preferred analysis the argument

is invalid, and the appearance of validity rests on an equivocation. We might be

able to make a valid argument by replacing (T2) with a different statement, namely

that if something is roughly a right triangle then the squares on its sides are roughly

equal to the square on its hypotenuse.8 But the Pythagorean theorem does not assert

this; replacing (T2) with a claim about rough right triangles amounts to a change

of subject. Moreover, I think a strong case could be made that Euclidean geometry

does not deal with conditions which hold only roughly in Tait’s sense of the word

“roughly”.

In order to shed light on the defect of the argument, I would like to compare

(T1f ) - (T3f ) with a well known deduction from the lore of Newtonian physics. In his

article “From the Phenomenon of the Ellipse to an Inverse-Square Force: Why Not?”,

George Smith considers one way Newton might have argued that the planets in our

solar system are subject to an inverse-square force directed at the Sun, but in fact did

not so argue (Smith, 2002a). The argument appears to have become part of the lore

of Newtonian mechanics, and even attributed to Newton himself, because Laplace

used it in 1798 in his Celestial Mechanics (Smith, 2002a, p. 32). The argument runs

as follows:

8This is the obvious replacement, though strictly speaking one could replace the premise with
many other premises so long as they contained information about objects which are roughly right
triangles.
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(E1) The orbital trajectories of the planets are ellipses with the Sun at one focus.9

(E2) If the orbital trajectories of the planets are ellipses with the Sun at one focus,

then the planets are subject to an inverse-square force directed at the Sun.

∴ (E3) The planets are subject to an inverse-square force directed at the Sun.

Assuming Smith’s account, the problem with this argument, and the reason Newton

chose not to use it, is parallel to the problem with the previous argument. Interpreted

in the straightforward and literal way, the argument is valid. However, Newton knew

at a fairly early stage, very likely before the Principia of 1687, that the orbital tra-

jectories of the planets were not exactly elliptical (Smith, 2002b, p. 153). Therefore

(E1) is not true; at best (E1) holds to high approximation. What would be needed

for a sound argument, then, is not (E2) but rather (E2a):

(E2a) If the orbital trajectories of the planets are ellipses with the Sun at one focus to

high approximation, then the planets are subject to an inverse-square force directed

at the Sun (perhaps: to high approximation).

The defect of (E2a) is that any number of force laws are compatible with the planetary

orbits being Keplerian ellipses to high approximation, including the law according to

which the planets are subject to a force directly proportional to the planet’s distance

from the center of the ellipse. Put in numerical terms, if f is the force on the planet

and r is its distance from the center of force, then f may be proportional to rn for

9That is to say, the planetary orbits are Keplerian ellipses.
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−2 ≤ n ≤ 1 even though the planet’s orbit is a Keplerian ellipse to high approxima-

tion. For the technical details I refer the reader to Smith (2002a). The basic moral

should be a familiar one: behavior that holds at a limit, or when a condition is met

precisely, is often very different from behavior that holds near the limit, or when the

same condition is met only approximately. (E2) is a claim about Keplerian ellipses

which is fragile in just this way: it attributes a property to Keplerian ellipses which

need not hold even approximately for trajectories which are only approximately Kep-

lerian ellipses. If Smith’s account is correct, Newton recognized this fact and instead

developed arguments which did not rest on fragile connections. Rather, Newton took

the trouble to prove that if the planetary orbits are very nearly circular and also

stationary to high approximation, then the corresponding bodies are subject to an

inverse-square force to high approximation (Smith, 2002a, pp. 32-33).

I can now state in more general terms, i.e., in terms not specific to Tait’s preferred

account, the difficulty with maintaining that there are no determinate discrepancies

between geometric structures and aspects of nature. To make a deductive application

of geometry, one usually begins by claiming some correspondence between a geometric

structure and some aspect of nature. One then takes the theorems of the relevant

geometric theory as holding also for that aspect of nature. But if there are really no

facts of the matter about the extent to which the aspect of nature differs from the

geometric structure—or perhaps just the one fact that it does differ to some extent

or other—then there is no sufficient reason to maintain that the geometric theorems

still hold. Even if one insists that the difference between the geometric structure and

nature is very small though otherwise not determinate, the difficulty remains for the
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familiar reason that behavior which is very close to a limit may be quite different

from behavior at the limit. In other words, on the account of geometry offered by

my opponents, typical deductive applications of geometry are defective for the same

reason Newton held the derivation of the inverse-square from the Keplerian ellipse to

be defective. Such views are therefore generally at odds with geometry’s deductive

applicability.

In the remainder of this section, I would like to consider two responses to the

objection I have just raised. The first response is to point out that in the example of

the application of the Pythagorean theorem discussed above, things are not as bad

as I have just argued. After all, we have for any triangles with sides a, b, and c that

c2 = a2+b2−2ab cos θ, where θ is the angle opposite side c. But this means as long as

θ is approximately 90 degrees, 2ab cos θ will be approximately equal to 0, and we will

have approximately the relationship between the squares on the sides of the triangle

claimed by the Pythagorean theorem. My opponent could maintain that at least in

the case of the Pythagorean theorem, so long as S is roughly a right triangle, the

Pythagorean theorem will hold roughly for S. Although such facts are not explicitly

part of arguments which apply the Pythagorean theorem, the arguments’ strength

may be taken to rely on those implicit facts.

I reply that the application of the Pythagorean theorem above is not the general

case. In the application of the Pythagorean theorem, we are lucky that behavior

close to the limit—concerning a triangle which is nearly right—is relevantly close to

the behavior at the limit—concerning a precise right triangle. As the example of the

argument from the Keplerian ellipse to the inverse-square force shows, this is not in
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general true. In geometry one finds many examples in which behavior near a limiting

case is unlike behavior at the limit: to choose the most basic example, parallel lines

have no point in common, but lines which are very nearly parallel do.10 One way of

reformulating my main objection to Tait would be to say that Tait’s account as it

stands appears to treat all cases of the deductive application of geometry on the model

of the special, lucky case of the application of the Pythagorean theorem. But by failing

to distinguish between arguments which are fragile in the way the ellipse argument

is fragile from arguments which are robust (i.e., not fragile), the attitude Tait ought

to take towards deductive applications of geometry in general is the attitude one has

towards the case in which behavior at the limit is unlike behavior near the limit.11

10Another only slightly less basic example: If one chooses two points on the circumference of a
circle, all of the points on the line segment connecting the two points lie inside the circle. But for
points which lie only approximately on the circumference of the circle this is no longer the case.

11The distinction between conditional claims being fragile or robust rests on another important
distinction, namely the distinction between a condition’s being met exactly and being met approxi-
mately. A conditional claim is fragile when it is true only if the condition described in the antecedent
is met exactly. If it remains true when the condition described in the antecedent is met to high ap-
proximation, then it is robust. (One may or may not need to add the qualification “to high approx-
imation” to the consequent of the conditional.) George Smith and others have emphasized that the
distinction between the exact and the approximate is an important distinction made within physics;
for example, a major open question of 17th century astronomy is whether the planetary orbits are
ellipses exactly or only to high approximation (Smith, 2002a, p. 35). Just as views such as Tait’s
seem to ignore the distinction between fragile and robust conditionals, they also seem hard pressed
to recognize the exact/approximate distinction within physics. For once we have acquired a suitably
sophisticated understanding of geometry (cf. §5.1), it would seem we should conclude immediately
that the planetary orbits could not be exactly elliptical, nor could any aspect of nature correspond
exactly to any precise geometric condition we might lay down. Thus at least at first glance, the
view ignores the exact/approximate distinction in physics by denying that any precise geometric
condition is met exactly. One salient way of recognizing the exact/approximate distinction within
physics using resources available to Tait would be to say it only concerns the phenomena once they
have been suitably idealized. The question of whether the planetary orbits are exactly as opposed
to approximately elliptical is really the question of whether the orbits as idealized are exactly or
merely approximately elliptical. An obvious worry about this way of drawing the exact/approximate
distinction is that the question whether the planetary orbits are elliptical seems to be a question
about the planetary orbits themselves, not about the planetary orbits as idealized. In any case, if
this way of drawing the distinction were congenial to Tait, it is evident that a more thoroughgoing
account of idealization in the sciences would be needed.
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The overall thrust of my objections to views which deny the existence of deter-

minate discrepancies between geometric structures and aspects of nature is that if

such views were correct, then deductive applications of geometry would come with

significant risk. This risk must be addressed in some fashion on pain of being unable

to recognize the deductive applicability of geometry. I would like to examine whether

Tait’s way of addressing the risk is effective as a response to my objections. Tait

registers the risk by insisting that geometric concepts only apply to the phenomena

to the extent that the phenomena participate in a corresponding geometric structure

or Form. For Tait, the application of the Pythagorean theorem constitutes an ex-

planation of why the squares on S’s legs equal the square on S’s hypotenuse only to

the extent that S participates in the Form Right Triangle (cf. Tait, 1986, p. 170).

This suggests that Tait might prefer to shore up the application of the Pythagorean

theorem we have been discussing by reading it as having the following form:

(T1′f ) S participates in Φ

(T2′f ) Φ is g

∴ (T3′f ) To the extent that S participates in Φ, S is g.

Alternatively, Tait might stick to the original rendering of the argument’s conclusion

(“S is g”), but he might insist that the argument be read with the disclaimer that it

only holds good to the extent that S participates in the Form Right Triangle. For my

purposes here, both of these ways of hedging the risk amount to the same thing.

If I am correct about the way in which Tait suggests we hedge the risk involved in
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deductive applications of geometry, I believe this reveals something important about

the conception of exact science Tait intends to develop. It is a conception on which

the primary aim of an exact science is to deepen our knowledge of some theoretical

models (or Forms) and to engage with the phenomena only insofar as they correspond

to those theoretical models or otherwise shed light on the theoretical models. In the

case of geometry, the chief cognitive aim according to Tait is to acquire knowledge of

the Forms and how they relate to each other. It is not an accident that geometry, on

such a conception, ignores the precise features of sensible individuals and subsumes a

number of different shapes, in the ordinary sense, under one Form. Part of the benefit

of pursuing an exact science (on Tait’s conception of an exact science) is precisely

that one may achieve generality by ignoring the variability in the phenomena.

The cost of the added generality gained by pursuing an exact science in the way

Tait describes is that one has to take a very modest view of the applicability of the

science. This is because behavior which is close to the conditions laid down by an

exact science is not always relevantly similar to the behavior which obtains when the

conditions are met exactly. I do not wish to claim that it is impossible, or even always

irrational, to pursue exact science in the way Tait is suggesting. Sometimes our aim

in the sciences is primarily to deepen our knowledge of geometric structures or other

abstract models. However, I do wish to claim that some branches of knowledge which

we would ordinarily consider to be exact sciences, for example physics as Newton and

many others have pursued it, cannot be exact sciences in Tait’s sense. The scientific

practices simply do not conform to Tait’s description. Newton does not derive the

inverse-square from the ellipse and then hedge his bets by adding the disclaimer: the
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planets are subject to an inverse-square force directed at the Sun to the extent that

their orbits are Keplerian ellipses. Rather, Newton gives an argument that the plan-

ets are subject to an inverse-square force at least to very high approximation given

that their orbits are circular and stationary to high approximation. Registering these

approximations requires taking a view of the planetary orbits as having some deter-

minate discrepancy (perhaps equal to zero) with respect to various precise geometric

conditions. Hence in some sciences since at least the time of Newton, notably in much

of physics, geometry and the world do not relate in the way Tait supposes they must

in an exact science.12

5.3 Nature, Shapes, and Geometric Structure

In the preceding section I argued that views (such as Tait’s) according to which

there are no determinate discrepancies between geometric structures and nature can-

not make sense of the legitimacy of geometry’s deductive applications in physics. If

successful, my arguments show that the family of views of which Tait’s is a partic-

ularly well developed example have an unsavory consequence. However, I have not

dealt with the original motivations for denying the existence of determinate discrep-

ancies between geometry and nature. Many of these motivations sound plausible,

especially the thought that tables and chairs are not the kinds of things that have

12Similarly, if one assumes Tait’s account of exact science to hold for a particular science, I think
one must take the explanations in that science to be fairly weak. I presume that on Tait’s view, even
today we can use (E1) - (E3) to explain the fact that the planets are subject to an inverse-square
force, albeit with the disclaimer that the explanation holds only insofar as the orbits are Keplerian
ellipses. This remains the case even though (i) the orbits are only roughly Keplerian and (ii) orbits
which are only roughly Keplerian need not be governed by an inverse-square force but could instead
be governed by a force directly proportional to distance.
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vertices or edges, or the thought that there is no non-arbitrary way to ascribe pre-

cise boundaries to a body. In this section I would like to address these motivations

to assess their import for our conception of the relationship between geometry and

nature.

Some of the motivations I discussed concern primarily the relationship between

geometry and visual phenomenology. For example, there was the observation that

the geometric concept of distance seriously outstrips anything we could establish by

perceptual means (see §5.1). For much of the history of our thinking about the

relationship between geometry and nature, facts about how nature appears to us

sensorily were taken to be particularly important and informative of how nature

is. In those circumstances, arguments from visual phenomenology were particularly

relevant. I would argue that this is no longer the case. Whether locations in physical

space have precise, well defined distances from one another does not hinge on our

ability to discern those distances perceptually. If anything, our inability to detect the

facts about precise distances in nature tells us more about our perceptual apparatus

than it does about nature.

Setting aside issues of human sense perception, the main motivation for denying

the existence of determinate discrepancies between geometric structures and nature

was the thought that bodies really don’t have determinate boundaries. When we ask

about a very round ball whether it is a sphere, it is at least plausible to answer that

not only is the ball not a sphere (“that’s not the kind of thing it is”), but since it

doesn’t have precise boundaries there’s no determinate answer about the extent to

which it differs from being a sphere. Following Tait’s way of setting up the issue,
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when we consider the ball as having some precise shape, we are really just picking out

a particular region of space at a particular time which we imagine the body to occupy.

At a more fundamental physical level, that spacetime region will contain higher mass

than some regions nearby. But there will be no sharp joints in spacetime which stand

out as the boundaries of the ball. We would be making an arbitrary choice in fixing

on any particular boundary.

I believe Tait’s way of setting up the issue of the boundaries of bodies is sensible.

The problem amounts to figuring out what in physical spacetime corresponds to

bodies. Note, however, that this way of setting up the problem assumes a prior

relationship between geometry and nature. For the problem assumes that physical

spacetime has a geometric structure containing at least spatiotemporal regions. The

geometric structure in question is presumably a model of relativistic spacetime theory,

i.e., the spacetime theory contained in general relativity. In that case, one might hope

that the relationship between geometry and nature could be given by simple structure

preserving mappings between relativistic geometric structures and physical spacetime.

It may be granted that the relationship between bodies’ shapes and physical spacetime

is much more complicated. Nonetheless, at the fundamental level one would not

need complicated notions (such as Platonic participation) to account for relationship

between geometry and nature.

The difficulty with this last suggestion, of course, is that a view which denies the

existence of determinate discrepancies between geometry and nature will go on to

deny that there are determinate discrepancies between physical spacetime and the

geometric structures described by general relativity. For instance, on Tait’s view the
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relationship nature has to relativistic spacetime is presumably the very relationship

an ordinary round ball has to the geometric sphere: Platonic participation. When we

move to the level of the geometric structure of physical spacetime, however, I do not

see what the motivation is for denying that physical spacetime has the same structure

as some of the geometric models described by general relativity. Nor do I see the mo-

tivation for denying that physical spacetime at the very least does approximate those

geometric models in a way that presupposes the existence of determinate discrepan-

cies between the models and the real structure of spacetime. Indeed, if my arguments

in §5.2 are successful, they show that the view according to which there are no de-

terminate discrepancies between geometric structures and physical spacetime cannot

make sense of the deductive applicability of geometry in the theory of relativity. My

arguments could be taken as a motivation for thinking that the geometric structures

described by general relativity do at least approximate the real structure of physical

spacetime even if they don’t quite capture it. The arguments could also be taken in

the spirit of a methodological guideline: to ensure the deductive applicability of a

geometric theory, make sure the theory picks out a geometric structure which at least

approximates the structure of physical space or spacetime.

In short, I believe there remains a difficult problem concerning what account to

give of our practices of ascribing shapes to bodies in light of our more fundamen-

tal theory of the geometric structure of spacetime. It is beyond the scope of this

chapter to flesh out the details of such an account. But I think it is plausible that

on a good account of shape attribution, whether a body has a particular shape may

involve sensitivity to the context of ascription. In particular, it may depend on what
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conclusion one is trying to demonstrate. This may in turn substantiate the view that

bodies do not have determinate boundaries independent of a context of attribution.

Such an account of attributions of shapes to bodies would not, however, be partic-

ularly revealing as to the fundamental relationship between geometry and nature.

That relationship concerns rather the relationship between certain geometric models

and physical spacetime. I would propose that this latter relationship be understood

in terms either of sameness of structure or in terms of approximation of structure.

Otherwise one is hard pressed to recognize the deductive applicability of the geometry.

5.4 Conclusion

In this dissertation I have considered a family of challenges to the applicability

of geometry, each of which articulates a sense in which geometry has been held not

to correspond to nature. I believe these challenges play two important roles for our

understanding of science. First, in their historical context, the challenges represent

practical hurdles to the development of successful mathematical natural science. This

is especially the case with the challenge according to which nothing in nature cor-

responds precisely to any geometric curve or surface. Surmounting that challenge

requires the development of a variety of tools, chief among them the vast expan-

sion of geometric structures for which we have an adequate theory, on the one hand,

and techniques of approximation, on the other. In discussing Galileo and Leibniz, I

gave special emphasis to their contributions towards an understanding of geometric

approximations.

Techniques of approximation allow a given geometric theory to be useful for de-
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scribing and reasoning about various aspects of nature despite significant failures of

correspondence between nature and the geometric structures described by the theory.

This raises the question whether the applicability of a given geometry imposes any

constraints whatever on the relationship between the structure it describes and the

aspect of nature to which the theory is being applied. In this final chapter, I argued

that there is such a constraint: there must at least be determinate discrepancies be-

tween the geometric structure and the aspect of nature to which it is being applied.

The reason why there is such a constraint is simply that without it, the techniques of

geometric approximation cannot get started. A concrete manifestation of the problem

is that in the absence of determinate discrepancies between geometry and nature, the

deductive applicability of geometry can no longer be accounted for.

Hence the second role challenging the applicability of geometry has for our under-

standing of science is as a means for investigating the relationship between geometry

and nature in those branches of science which apply geometry, notably physics. So

far I have spoken as if there are two such relationships, structural similarity and ap-

proximation. The notion of approximation especially deserves further examination.

Like most intuitive notions, it surely breaks apart into a number of distinct concepts.

The concept of one object’s being a good approximation of another depends on some

relevant measure of distance or resemblance, and these measures differ according to

context. Even within mathematics, approximations are extremely heterogeneous, so

that one object is a good approximation of another if, for example, they never stray

very far from one another by Euclidean measures of distance, or if their first deriva-

tives agree at a particular point, or if they are the same except over a set of measure
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zero, etc. I believe that it is by paying closer attention to the notions of approxima-

tion operative in empirical science that we can shed light on the relationships between

geometric structures and nature when geometry is applied.



Appendix A

An Everywhere Differentiable

Approximation of the Koch Curve

It is a consequence of Leibniz’s account of the physical world that no body ever

has a shape which corresponds precisely to any geometric surface, nor does the motion

of any thing correspond precisely to any geometric curve.1 This fact raises at least

two important questions for Leibniz: (i) Which (if any) mathematical objects do pro-

vide accurate representations of the shapes and trajectories of bodies?; (ii) How can

mathematical physicists employ the ordinary geometric curves in their work despite

the failure of correspondence between those curves and the physical objects? In §4.2

I provide my interpretation of Leibniz’s answer to the latter question. The main idea

is that the shapes and trajectories of bodies may be suitably well approximated by

traditional geometric curves; in particular, they may be approximated to a margin of

error small enough that the discrepancy is of no practical import for the physicist or

1See Chapter 4 for extensive discussion of this issue.
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even imperceptible. This leaves open the question whether arbitrarily close geometric

approximations for the shapes and trajectories of physical objects always exist. In

other words, given any physical object’s shape or motion and any margin of error

ε, does there exist a geometric curve which approximates that shape or motion to

within ε? To the extent I can discern an answer to this question in Leibniz’s writ-

ings, Leibniz appears to take the optimistic attitude that sufficiently close geometric

approximations do generally exist.2

Leibniz’s contention that real shapes and motions can be so well approximated by

geometric curves places some constraints on Leibniz’s conception of physically real

shapes and motions. However, it does not provide us with a rich enough conception

of those shapes and motions in order to know how to represent them accurately with

mathematical objects and thereby answer question (i). I take Samuel Levey to have

provided the most promising suggestion for an answer: for Leibniz, the boundaries

and motions of bodies are fractally complex and may be thought of on the model

of fractals such as the Koch curve (Levey, 2003). Hence although a body whose

trajectory traces out a perfect circle is physically impossible for Leibniz, a body

whose trajectory traces out a Koch curve is at least physically possible. Moreover,

we can think of the actual trajectories of bodies as closely resembling fractals such

as the Koch curve even if such trajectories are not detectable by our eyes or other

instruments.

The aim of this appendix is to show that it is consistent to view the shapes and

motions of bodies both as being fractally complex and as being approximated to

2On this topic see especially §4.2.2.
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within any margin of error by traditional geometric curves, indeed even by geometric

curves which are differentiable everywhere. This is demonstrated by defining an

approximation to the Koch curve which is differentiable everywhere and which never

departs from the Koch curve by more than any given margin of error ε.3 I take this to

show that our best accounts of Leibniz’s answers to (i) and (ii) are compatible with

each other and represent a consistent Leibnizian view of the relationship between

geometry and physical reality.

A.1 The Approximation

A.1.1 Overview of the Proof

The Koch curve is the limit towards which a certain sequence of curves converges

uniformly. Informally speaking, the members of this sequence are generated in the

following way: one begins with a line segment of length = 1 which represents the 0th

curve in the sequence; given the kth curve of the sequence, one generates the k + 1st

curve by dividing each line segment of the kth curve into three line segments, erecting

an equilateral triangle on the middle segment (in what one defines to be the “positive”

direction), and then erasing the base of the triangle. Figure A.1 provides an image

of the first three stages of this process; Figure A.2 gives the seventh stage.4

3Talking of one curve never departing from another by more than some error margin ε is a helpful
though somewhat loose manner of speech. What it really amounts to is that for any value of the
input parameter x ∈ [0, 1], the distance between the two points on the curves corresponding to that
value for x is less than ε. It should also be borne in mind in what follows that a point on a curve
k(x) is a point on a plane, so that an expression of the form |k1(x)− k2(x)| < ε is a claim about the
two-dimensional Euclidean distance from point k2(x) to point k1(x).

4I have drawn all figures with the exception of A.2 using software called “The Geometer’s Sketch-
pad”. Figure A.2 was produced by an Internet user named “Fibonacci” and released under the GNU
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Figure A.1: The first three stages in the iterative construction of the Koch curve.

Figure A.2: The seventh stage in the iterative construction of the Koch curve.

Because this sequence of curves converges uniformly to the Koch curve, the mem-

bers of the sequence themselves provide arbitrarily good approximations of the Koch

curve. In other words, if one is provided a margin of error ε, one can always find

a large enough k such that for any l greater than or equal to k, the lth member of

the sequence never departs from the Koch curve by more than ε. Thus if one merely

wanted to approximate the Koch curve to within any given margin of error ε using a

finite number of line segments connected end to end, a sufficiently advanced member

of the sequence of curves just described provides the required approximation.

Despite the fact that the members of the sequence of curves under discussion are

continuous and are built out of elementary geometric figures (viz., lines), they are

not smooth and indeed their first derivatives do not always exist. Nonetheless, for

Free Documentation License. It was downloaded from the following URL:
http://commons.wikimedia.org/wiki/File:Koch curve.svg.
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any given member of the sequence one can in turn define an approximation of it

which never departs from it by more than any given margin of error ε and which

is differentiable everywhere (except at its endpoints). This is accomplished in the

following way: given some margin of error ε, one chooses a radius r (≤ ε
2
) of a circle

which one inscribes in each of the various 60 and 120 degree angles in the curve one is

approximating. One then maps those points which are sufficiently close to the vertex

of an angle onto the arc of the corresponding circle, leaving the remaining points

fixed. Thinking of the curves as trajectories of two particles, whereas in the original

curve a particle makes various sharp turns of 60 and 120 degrees, in the differentiable

approximation the particle avoids the sharp turns by taking circular paths to move

from line segment to line segment. Figure A.3 gives a diagram of how to approximate

the 1st member of the sequence of curves which converges to the Koch curve.

Figure A.3: To the left is the first curve in the sequence pictured together with
inscribed circles which will be of use in approximating it. In the approximation to
the right, one has connected the line segments with circular arcs, thereby smoothing
out the sharp corners.

It follows that for any margin of error ε, one may approximate the Koch curve

K(x) to within ε
2

by choosing any sufficiently advanced member kn(x) of the sequence

of curves which converges to K(x). One furthermore has the means to approximate

kn(x) to within ε
2

by a curve which is everywhere differentiable using the technique

just described. This last curve will then be an approximation of the Koch curve that



Appendix A: An Everywhere Differentiable Approximation of the Koch Curve 174

is differentiable everywhere and never strays from the Koch curve by more than ε.

A.1.2 The Koch Curve and Sequence

The Koch curve is a certain function K : [0, 1] 7→ R × R described by Helge

von Koch in his 1904 paper “Sur une courbe continue sans tangente obtenue par

une construction géométrique élémentaire”.5 K(x) is the limit to which a sequence

of functions kn : [0, 1] 7→ R × R converges. In this subsection I will review various

facts about the Koch curve which follow from Koch’s original paper. The principal

fact about the Koch curve needed for the present purpose of approximation is the

following: Given any ε > 0, for sufficiently large n ∈ N one has that for all x ∈ [0, 1],

|K(x)− kn(x)| < ε.

I begin with a description of the sequence of functions kn(x). k0(x) is simply a

line segment one unit long. One may define k0(x) as mapping a given parameter x

with 0 ≤ x ≤ 1 to the corresponding point (x, 0). One may define kn+1(x) in terms

of kn(x): one maps a given point on the base of a triangle built at the n + 1st stage

to the point of intersection of the line perpendicular to the base at the given point

and the corresponding line on the top of the triangle; one maps the remaining points

to themselves. For instance, to define k1(x) in this way, one proceeds as follows:

For x ∈ [0, 1
3
], kn+1(x) = kn(x)

For x ∈ (1
3
, 1
2
], kn+1(x) = (x,

√
3(x− 1

3
))

For x ∈ (1
2
, 2
3
), kn+1(x) = (x,

√
3(2

3
− x))

For x ∈ [2
3
, 1], kn+1(x) = kn(x)

5For the original paper see (Koch, 1904). For a translation into English, see (Koch, 2004).
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Since k0(x) lies on the x-axis, it suffices to map a given point on the base of the

triangle constructed at the 1st stage to the point on the top of the triangle with the

same x coördinate as the given point. The y coördinate is easily found using facts

about right triangles. At k2(x) and beyond, a particular r ∈ [0, 1] does not in general

map to a corresponding point (r, y); in other words, the value of the parameter is not

generally equal to the value of the abscissa on the corresponding point of the curve.

But this does not preclude definitions of k2(x) and beyond following the instructions

given in the last paragraph. The definitions become cumbersome, however, and so I

omit them.

It is straightforward to see that the kn(x) just described do converge uniformly

to a limit, so I will briefly rehearse the argument. The main insight is that if one

defines the kn(x) in the way just outlined, then the distance between kn−1(x) and

kn(x) for any x is at most
√
3
2
× 1

3n
—i.e., the height of the triangles built at the nth

stage. Therefore for any m ≥ n, the distance between kn(x) and km(x) is less than

(
√
3
2
× 1

3n+1 ) + (
√
3
2
× 1

3n+2 ) + (
√
3
2
× 1

3n+3 ) . . .

=
∑∞

k=n+1

√
3
2
× 1

3k
=
√
3
2
× 1

3n+1

∑∞
k=0

1
3k

=
√
3

4×3n .

It follows that the sequence kn(x) is uniformly Cauchy and therefore uniformly

convergent. For given an ε > 0, one can calculate a natural number N such that for all

natural numbers m,n > N and x ∈ [0, 1], |kn(x)−km(x)| < ε: one merely needs an N

that satisfies
√
3

4×3N < ε. Given that the sequence kn(x) converges uniformly to a limit

K(x), the principal fact I need arises as an immediate consequence of the definition

of “uniform convergence”. For by definition the sequence kn(x) is convergent to K(x)

just in case for every ε > 0 there exists n ∈ N such that for all x ∈ [0, 1] and all natural
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numbers m ≥ n, |K(x) − km(x)| < ε. One is therefore assured that given any ε > 0,

there is an n large enough so that for all m ≥ n and x ∈ [0, 1], |K(x)− km(x)| < ε.

A.1.3 A Differentiable Approximation of kn(x)

The immediate goal is to show that given any ε > 0 and function kn(x), one can

define a corresponding everywhere differentiable function fn : [0, 1] 7→ R × R such

that for all x ∈ [0, 1], |kn(x)− fn(x)| < ε. The strategy is as follows. Given an ε > 0

and some kn(x), one first notes that kn(x) is simply a finite collection of line segments

connected end-to-end at either 60 or 120 degree angles. Choosing a radius r ≤ ε
2
, one

inscribes circles in the interiors of each of the angles of kn(x). Then one maps any

point P on kn(x) lying between the two points of tangency of any given circle to the

point P ′ on the circumference of the circle which is on the line connecting the center

of the circle and P . Such P and P ′ will be shown never to be more than ε apart

from each other. For the rest of the points of kn(x), one simply lets fn(x) = kn(x),

in which case there is no distance at all between them.

Given a particular n ∈ N and ε > 0, one may define in this way an approximation

fn(x) of kn(x) (see Figure A.4). One first chooses r =min( ε
2
, 1
3n+1 ).6 Using this r,

one inscribes a circle in the angle ABD by first bisecting the angle and then putting

the center of the circle with radius r at 2r√
3

away from B on the angle bisector in the

interior of the angle. The x coördinates of the points of tangency E and G are then

1
3n
− r√

3
and 1

3n
+ r

2
√
3
, respectively. Thus for x ∈ [0, 1

3n
− r√

3
], define fn(x) = kn(x).

6One chooses r no larger than 1
3n+1 to make sure that the circles are at the right scale. Otherwise

if someone chose a very large ε, there would be no points of tangency of the circles with the line
segments.
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B'

G = (
1

3n
+

r

2 3
,

r

2
 )

F

E = (
1

3n
- 

r

3
, 0)

D = (
1

2·3n-1
, 

3

2·3n
)

B = (
1

3n
, 0)

A = (0,0)

C = (
1

3n
-

r

3
, r)

Figure A.4: The first two segments of kn(x) and the circle used in the approximation.
Point B is mapped to B′ and the points between E and G are similarly mapped to
corresponding points on the circle.

For x ∈ ( 1
3n
− r√

3
, 1
3n

+ r
2
√
3
), if kn(x) = (a, b) then define

fn(x) = [ r√
(a−( 1

3n
− r√

3
))2+(b−r)2

× (a− ( 1
3n
− r√

3
), b− r)] + ( 1

3n
− r√

3
, r).7

To continue the definition, one needs to construct another circle at D. But before

I continue, I should note that over the first interval just defined, the distance between

kn(x) and fn(x) is 0, and over the second interval the distance never exceeds |FB|, the

height of the triangle GBE. This is because the arc of the circle GB′E lies entirely

within the triangle GBE. But |FB| = r
2
√
3
, so that |FB| ≤ ε

4
√
3
< ε. Moreover, so

far the function is evidently differentiable over the first interval, which is a simple

line segment, and over the second interval, which is the arc of a circle.8 The only

7This daunting expression is just a vector calculus translation of the following simple instructions:
Start from C, then construct a vector in the direction from C to (a, b) of length = r.

8Of course, fn(x) is not differentiable at the endpoints (0, 0) and (1, 0). When I say that fn(x)
is everywhere differentiable, I will always mean to exclude the endpoints.
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C'

J = (
1

2·3n-1
+ 

r 3

2
,

3

2·3n
- 

3r

2
)

D = (
1

2·3n-1
, 

3

2·3n
)

(
1

3n
, 0) = B

D'

I
(

1

2·3n-1
- 

r 3

2
,

3

2·3n
- 

3r

2
) = H

K = (
2

3n
, 0)

C' = (
1

2·3n-1
, 

3

2·3n
- 2r)

Figure A.5: The second and third segments of kn(x) and the circle used in the ap-
proximation. Point D is mapped to D′ and the points between H and J are similarly
mapped to corresponding points on the circle.

suspicious point is where the intervals meet, namely the point of tangency of the

circle with the line segment. But this may be checked, and it will be found that the

left-hand and right-hand derivatives at x = 1
3n
− r√

3
are both equal to (1, 0), so that

the fn(x) is differentiable at the point of tangency as well.

Continuing the definition (see Figure A.5), one constructs another circle using the

same radius r, inscribing it into the angle BDK by first bisecting the angle and then

putting the center of the circle at 2r away from D on the angle bisector in the interior

of the angle. The x coördinates of the points of tangencyH and J are then 1
2×3n−1− r

√
3

2

and 1
2×3n−1 + r

√
3

2
, respectively. Therefore over the interval x ∈ [ 1

3n
+ r

2
√
3
, 1
2×3n−1 −

r
√
3

2
], define fn(x) = kn(x). Over the interval x ∈ ( 1

2×3n−1 − r
√
3

2
, 1
2×3n−1 + r

√
3

2
), if

kn(x) = (a, b) then define
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fn(x) = [ r√
(a− 1

2×3n−1 )
2+(b−(

√
3

2×3n
−2r))2

(a− 1
2×3n−1 , b− (

√
3

2×3n − 2r)] + ( 1
2×3n−1 ,

√
3

2×3n − 2r).

Note that over the first of the intervals just defined, the distance between kn(x)

and fn(x) is 0, and over the second interval the distance never exceeds |DI|, the height

of the triangle HDJ . This is because the arc of the circle HD′J lies entirely within

the triangle HDJ . But |DI| = 3r
2

, so that |DI| ≤ 3ε
4
< ε. Moreover, since these

intervals are again a line segment and an arc of a circle, fn(x) remains differentiable

over the intervals and also at their point of tangency x = 1
2×3n−1 − r

√
3

2
.

Since I have described how to define fn(x) at both the 60 and 120 degree angles

in kn(x), I have in effect handled all cases. Continuing in this way, therefore, one

will eventually define an everywhere continuous function fn(x) which never departs

from kn(x) by more than ε. Therefore for every n ∈ N and every ε > 0, there exists

a function fn(x) such that for all x ∈ [0, 1], |kn(x)− fn(x)| < 0.

A.1.4 Getting to Within ε of K(x)

Let ε > 0 be given. By §A.1.2, there exists an n ∈ N such that for all x ∈ [0, 1],

|K(x)−kn(x)| < ε
2
. By §A.1.3, there exists a function fn(x) such that for all x ∈ [0, 1],

|kn(x)− fn(x)| < ε
2
. Therefore for all x ∈ [0, 1],

|K(x)− fn(x)| = |K(x)− kn(x) + kn(x)− fn(x)| ≤ |K(x)− kn(x)|+ |kn(x)− fn(x)|

< ε
2

+ ε
2

= ε

Since fn(x) is continuous everywhere except at its endpoints and never departs from

K(x) by more than ε, fn(x) is the desired approximation.
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A.2 Discussion

Von Koch’s original intention was to produce a curve which is everywhere contin-

uous but nowhere differentiable. From a purely mathematical point of view, what the

present result shows is that if one is prepared to settle for an approximation of Koch

curve that never departs from it by more than any given ε, one can regain differen-

tiability everywhere. Despite the fact that this goes against von Koch’s intention, it

may be of interest that continuous curves which are nowhere differentiable can be so

closely approximated by continuous curves which are differentiable everywhere.

From the point of view of Leibniz’s philosophy, it is important that a fractally

complex curve such as the Koch curve can be approximated to within ε by simple

geometric curves, differentiable or otherwise. Von Koch’s original paper already shows

that if one is willing to use an approximation which is continuous but fails to be

differentiable at some finite number of points, one may simply choose kn(x) for a high

enough natural number n. Thinking of kn(x) as a trajectory, bodies following the line

segments making up some kn(x) move in straight paths except when they undergo

sudden changes of direction of 60 and 120 degrees. Such a trajectory is unusual in the

Leibnizian or even 17th century physics of moving bodies, which generally represents

velocities as continuous and therefore represents motions using differentiable curves.

The present result suggests that everywhere differentiable curves are at least capable

of approximating what is, from the standpoint of Leibniz’s fundamental physics, a

fractally complex trajectory or shape.
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